The Reproducibility Crisis of Psychology and What It Is Trying to Tell Us

By Doug Marman

Over the last few years, a raging crisis has hit the field of psychology: Most published studies can’t be replicated by others. For example, 100 experiments published by highly respected psychology journals were recently tested and only 36% produced results in agreement with the original reports.[1] This is called the “reproducibility crisis.”

It’s a complicated problem. It isn’t caused by fraud, except in rare cases. Many factors are involved, as explained by this article. For example, designing psychology experiments is more difficult than it sounds, and drawing conclusions often involves complex statistical analysis. Even the experiments aimed at reproducing experiments have been found wanting.[2]

This has created a rift among psychologists, with half saying that the problem is more about the way reproducibility tests are run, with the other half feeling “the academic ground give up beneath their feet.” This led one reporter to ask:

“Crisis or not, if we end up with a more rigorous approach to science, and more confidence in what it tells us, surely that is a good thing?”[3]

No, I don’t think that is the answer. In fact, I believe it will make the reproducibility problem worse. The rigorous approach of traditional science is part of the problem. It is time to put a spotlight on how objectivity can interfere with psychology experiments. Otherwise, we are going to continue casting doubt on valid scientific experiments.

Take, for example, an experiment that is literally a textbook case:[4] In the 1980s, Fritz Strack and his co-workers showed that when a person smiles, it improves their mood. Many well-known psychologists, such as William James, and scientists, such as Charles Darwin, have said that expressions create emotions. It makes sense. The challenge was how to design an experiment that scientifically verifies this.

You can’t just ask people to smile, because that automatically makes them conscious of what they’re doing. That will invalidate the results. Strack and his co-workers needed to find a way to get people to move their mouths into a smile, or a pout, without them knowing what they were doing. They found an ingenious solution.

When they asked people to hold a pen in their mouths, with their mouths closed, they automatically moved their faces into a sort of pout. When they asked another group to hold a pen between their teeth without closing their lips, they naturally formed a smile. The subjects had no idea what the test was really about. They were told that the experiment was studying people trying to do two things at the same time. They needed to hold the pen in their mouths while evaluating a series of Far Side cartoons.

Images from an experiment that tested the influence of smiling versus pouting.

The results showed that the group with smiles found the cartoons funnier than the group who was pouting. In other words, just putting your face into a smile naturally brightens your day.

The experiment has been verified countless times over the last twenty-five years, by many researchers. Some have expanded and tested the idea in new ways, besides smiles and pouts, and found similar results. For example, if you take a confident stance, in front of a group, you feel more confident.

So, Strack volunteered to have his classic study be tested by a team of researchers who wanted to reproduce psychology experiments. He wasn’t concerned. It had already been validated before.

Unfortunately, results from the replication experiment contradict Strack’s conclusion. The new test was run by seventeen scientists, across eight countries, using 2,000 subjects. They found no evidence that an unintentional smile or pout made any difference in the funniness of cartoons.[5]

How can this be?

Strack questions the conclusions and the set-up of the experiments. He voiced his concerns even before the testing began, after looking over their approach. At first, as I read Strack’s complaints, it felt like he was trying to defend his original work. But a number of things made me question my first impression.

First, Strack himself offered his experiment to be tested for replication and willingly supplied his original notes and evidence. Second, it had been confirmed successfully many times by other researchers. Third, he questioned the impact of the replication experimenters excluding the results of 600 subjects because they felt those subjects were holding the pens incorrectly or their answers were too wildly divergent. Did their selection to exclude certain results introduce a bias? Fourth, Strack pointed out that many of the subjects were psychology students. Since this was a textbook case, they could have recognized the experiment and its true purpose. That would have prevented them from acting naturally. They should never have been involved.

But it was the fifth point he made that jolted my attention. Strack said that he didn’t like the addition of cameras in the room watching the subjects because it could make the participants self-conscious. That jogged my memory. I had seen this scenario before.

It was one of the most famous early studies in psychology. In 1897, George Stratton strapped on a pair of lenses over his eyes that inverted and reversed his field of view.[6] He knew that our eyes have built-in lenses that produce the same effect: All of the images hitting our retinas are flipped upside-down and reversed. Stratton wanted to see if his mind would naturally find a way to invert and correct his vision.

Sure enough, after five days of looking through inverting lenses, he saw everything as right-side-up. After a week, his new vision felt completely normal.

The results were so startling that hundreds of follow-on experiments were run to reproduce the results. Many did, but some could not. For example, David Linden, a hundred years later, called Stratton’s theory of achieving upright vision a myth.[7] This has created an ongoing controversy.

I studied dozens of experiments with inverting lenses to find an explanation for what was going on. Why were the results so different? I finally found an answer in the longest study ever performed (40 days).[8] Ivan Kohler discovered, unexpectedly, that when he tried to examine the subjects every day with a battery of clinical tests, it prevented with their ability to adapt. They actually regressed.[9]

At first, Kohler thought lab tests would help show the progress his subjects were displaying. Just as Linden did, Kohler brought them in for examination on a daily basis. However, the tests made things worse. The subjects reverted back, losing the gains they had made. What’s going on, he wondered? Kohler had to alter his tests before figuring out the problem. As soon as the experiments were designed to resemble the everyday world, the problem disappeared:

“When the subject was asked to ‘aim’ at something, or to put up his hands in protection when danger threatened…he made correct responses. But when he was asked, ‘Please point this marker in the direction the light is coming from,’ errors occurred.”[10]

That’s when Kohler realized that the subjects were adapting instinctively to the real world. The moment they tried to think critically and objectively about what they were seeing, it broke their “perceptual set.” They reverted back to pre-experimental ways of seeing the world. Asking them to analyze what they were doing interfered with their ability to adapt.

This was hard to understand, Kohler wrote. It took weeks to solve the mystery. For example, after fourteen days of fencing practice, subjects with inverting lenses were able to respond to their opponent’s blade without errors. When it came to fencing, the correct reaction was all that mattered. But if he asked them the question, “Where do you see the rapier point?” it forced them to think critically about what they were experiencing, breaking their lens of perception. They immediately reverted back to old ways of seeing. His question interfered with their instinctive responses.

Getting the subjects to think objectively about what they were doing prevented them from adapting to upright vision. This was the mistake Linden had made. Even though Linden ran his experiment thirty years after Kohler, he didn’t realize the negative impact of objectivity. No wonder all his subjects failed to achieve upright vision.

This is the same affect that cameras can have on subjects. Strack was right: It would make them conscious of being recorded and seeing what they were doing objectively. It will probably make the whole experience far less natural. On top of this chilling effect of cameras, all of the instructions telling the subjects what to do were presented by a recorded video, in a closed room with no other people, making the experience even more sterile and impersonal.

Can this explain why the subjects showed no positive effects from their unintentional smiles? I think it does. Remember, Strack was trying to study an unconscious effect. He designed his experiments specifically to avoid any interference of conscious thought on the part of the subjects. If moving their mouths into the shape of a smile influences their mood, it is going to happen unconsciously. This means they need to feel at ease and natural, or it isn’t going to work. Thinking critically and objectively about what they were doing is going to interfere.

Think of the irony: From the desire to subject psychology experiments to rigorous, clinical objectivity, they prevented the very thing they were trying to study—natural responses. They intentionally used cameras and pre-recorded instructions to eliminate outside biases, and without knowing it they introduced a new bias that was just as powerful—objectivity.

Imagine what would happen to a loving relationship if you started analyzing your life partner or lover objectively. Do you think your relationship is going to get better or worse? Is it going to warm up or cool down your natural and playful back-and-forth exchanges?

Psychology research projects have noted the detrimental impact of objectivity on natural relationships. For example, in the last few decades, psychologists have looked closer at the way people learn new skills. John Flach, Professor of Psychology at Wright State University, offers an interesting illustration for how skill-based learning works: Look at the process a child goes through when first learning how to walk, then how to skate on ice, next how to do a handstand, and finally how to walk on stilts.

Each skill needs a “different type of coordination pattern,” a different way of acting to achieve control.[11] In other words, they each require a different lens of perception, a different way of seeing, to master these skills. They learn this unconsciously through trial and error.

Skill-based learning starts with actions. Trying something gives the child feedback, such as falling on their faces or flipping onto their backs. Then they try a new approach. With each loop of trial and error they gradually figure out how to balance and how to move. Learning at this stage is non-verbal and not mediated by thought: The child can’t explain how to balance on stilts. They don’t know how they learned to walk on their hands or skate on ice. They just did it.

This natural learning process is the best way to acquire new skills. No one teaches babies how to talk. They learn it themselves by making sounds and hearing the sounds they make. They learn how to use their bodies the same way: They form working relationships with their muscles and cells. They figure it out without thinking about it.

This is different from academic study, where we consciously think to understand new ideas and what they mean. Our natural process for learning new skills, on the other hand, is largely unconscious and critical thinking can interfere with this natural process.

Psychology experiments are not easy to design. The more rigorous and objective you make them, the more artificial they become, preventing the natural responses you are looking for. You end up learning less about how people act in the real world and more how they behave in a clinical lab.

This is why, as I said above, I believe more objectivity will make the reproducibility crisis worse, not better. What is needed is a better understanding of our lenses of perception, and where to use them. For example, objectivity, as a way of seeing, shouldn’t be the goal of science, but as a tool for double-checking and verifying our experiments. If we want our relationships with others and with our bodies to be natural and spontaneous, we need a relational lens instead, not objectivity.

Over the last century, psychologists have tried to become more rigorous and objective—to become more like physicists. At the same time physicists have come to realize that objectivity can’t explain the behavior of subatomic particles. This is the lesson they learned from quantum mechanics: How you set up an experiment alters the results, and there is nothing you can do to avoid this. In other words, there is no such thing as a fully objective perspective because all measurements influence the outcome.

This same principle applies to the study of natural human responses. It can’t be avoided. Objectivity and critical analysis can and will interfere. If we understand this better, I believe psychology experiments will become easier to reproduce.

I think Katie Palmer got it right when she said that the reproducibility crisis comes down to this:

“The field [of psychology] may have to think differently about how it thinks about itself.”

[1] Open Science Collaboration (over 260 co-authors), “Estimating the Reproducibility of Psychological Science,” Science, August 28, 2015: Vol. 349, Issue 6251.

[2] Daniel T. Gilbert, Gary King, Stephen Pettigrew, Timothy D. Wilson, Comment on ‘Estimating the Reproducibility of Psychological Science,’” Science, March 4, 2016: Vol. 351, Issue 6277.

[3] Ed Young, “Psychology’s Replication Crisis Can’t Be Wished Away,” The Atlantic, March 4, 2016.

[4] Fritz Strack, Leonard L. Martin, Sabine Stepper, “Inhibiting and Facilitating Conditions of the Human Smile: A Nonobtrusive Test of the Facial Feedback Hypothesis,” Journal of Personality and Social Psychology, Vol 54(5), May 1988, 768-777.

[5] Daniel Engber, “Sad Face,” Slate magazine,  August 28, 2016.

[6] George M. Stratton, “Vision without Inversion of the Retinal Image,” Psychological Review 4, no. 4 (1897), p. 341-360.

[7] David E. J. Linden, Ulrich Kallenbach, Armin Heinecke, Wolf Singer, Rainer Goebel, “The Myth of Upright Vision,” Perception 28, no. 4 (1999), p. 469-481. Also posted at

[8] Ivo Kohler, The Formation and Transformation of the Perceptual World, tr. Harry Fiss (New York: International Universities Press, 1964).

[9] Doug Marman, “Lenses of Perception: A Surprising New Look at the Origin of Life, the Laws of Nature, and Our Universe,” (Ridgefield, Washington, Lenses of Perception Press, 2016.), p. 88-90.

[10] Ivo Kohler, The Formation and Transformation of the Perceptual World, p. 153-155.

[11] John M. Flach and Fred Voorhorst, “What Matters?: Putting Common Sense to Work,” (Dayton, Ohio, Wright State University Libraries, 2016), p. 104-105.

The Unfinished Revolution of Quantum Mechanics

By Doug Marman

Quantum mechanics has proven itself to be the most accurate scientific theory ever known. Plus, some 30% of the US gross national product is based on quantum mechanical inventions. They’re used in everything from computer chips and lasers to CD players and magnetic resonance imaging machines in hospitals.

However, the theory has yet to make its way into the understanding of the general public. As a result, the scientific revolution of quantum mechanics is unfinished.

Prague Astronomical Clock. Photo by Vera Kratochivil

Prague Astronomical Clock. Photo by Vera Kratochivil

Yes, we’ve all heard the term ‘quantum.’ But few understand the science and what it means, even in a simplified way. Scientists aren’t any better off. They know how to use the equations, but they don’t understand what it means either.

Since the modern age of science began, this has never happened before.

Isaac Newton published his book that explained gravity and the laws of motion in 1687. People struggled with the idea at first, that a force could reach across space from the sun and pull the Earth. However, after a couple generations, the idea was accepted by almost everyone. People could picture the universe as a giant clockwork, driven by cause and effect.

Michael Faraday and James Clerk Maxwell launched the electromagnetic revolution in the mid 1800’s. Within fifty years, electrical inventions were springing up everywhere. The term “force field” became widely used and most people intuitively understood what it meant.

Einstein’s principle of relativity also created problems at first. How can the speed of light look the same when speeding toward a beam of light or away from it? How can the measurement of time be relative to our reference frame?

It’s still a challenge for most people to fathom why the world is this way. However, the underlying principle is simple enough: Everyone’s experience is relative. There is no perspective that is truer than any other.

It takes time for major breakthroughs to filter into the understanding of the public. When they do, they literally change the way we perceive the world. In other words, they give us a new lens—a new way of seeing.

But now, for the first time in history, a revolutionary scientific discovery has failed to reach a general understanding. A hundred years after quantum theory was discovered, it still doesn’t make sense, not even to physicists.

This creates a problem. An intuitive understanding isn’t a part of our social wisdom, but something else has filled the void. It happened unintentionally. The void has been filled with a conclusion that many scientists have reached: Life doesn’t make sense. There is no meaning to quantum uncertainty; that’s just the way it is.

This idea is creating a wedge between science and other fields, such as philosophy and religion, because many people don’t accept it. Einstein hit the nail on the head when he said, “God doesn’t play dice with the universe.” In other words, the world isn’t just a bunch of random pointless events. It means something.

Einstein, in a letter to Max Born, 4 December 1926. Often quoted as "God does not play dice with the universe."

Einstein, in a letter to Max Born, 4 December 1926. Often quoted as “God does not play dice with the universe.”

As a result, there’s been a change in the public’s perception of science. Scientists have noticed the shift in attitude. Some believe that this is a sign that our society is sliding backwards towards superstitious thinking, but I don’t think that’s the case. Most of those claiming that something is missing from science are highly educated.

I think a big underlying cause of this growing rift is that we don’t yet understand one of the biggest breakthroughs in science. A deeper understanding of quantum mechanics can heal this problem.

It’s important to realize that this idea—that life is just ‘probabilistic’ and ‘unpredictable’ at the level of fundamental particles, and the best we can do is accept it—is a false conclusion. Physicists haven’t learned this scientifically. They simply don’t know how else to interpret the data.

In other words, this isn’t a lesson of quantum mechanics. It’s simply a sign that physicists don’t know what it means. It isn’t a conclusion. It’s a reminder that the quantum revolution is incomplete.

I say this because it is now clear to me, after I found a way to explain the quantum mystery. I didn’t expect to uncover a simple intuitive explanation. It was an accident. But looking back, it’s now easy to see the huge void, like a dark cloud, that has kept the real lesson of quantum mechanics from our doorstep.

Quantum theory now makes sense to me, and I think that it is simple enough that most people can understand. More importantly, the underlying principles don’t just apply to the subatomic world. They play a vital role in our everyday lives. That was the biggest surprise for me.

My wife, Karen, was my first litmus test. She never studied physics in college. She doesn’t read science books. She didn’t know anything about quantum mechanics. But after reading chapter 13, “The Spooky World of Quantum Physics” in my book, Lenses of Perception, she shocked me and said, “That was fun.” She actually enjoyed reading it.

She even asked me to get her a T-shirt that says, “I sorta understand quantum mechanics.”

Of course, she realized that a lot of the science was over her head. She could see that, but it still intuitively made sense to her.

This might seem like a small thing, but it is something that leading physicists say is impossible: They claim that no one understands it.

More importantly, Karen began seeing the principles everywhere. The world now makes more sense and is easier to understand.

For example, we experience unpredictable effects in our lives everyday, because we never know for sure how others, or even how we, will act in a situation we’ve never faced before. These are true quantum effects. They are an important part of life, because they show us that life isn’t completely driven by outside forces. It also emerges from within.

Karen’s reaction isn’t unique. Another person recently wrote to tell me that he was watching a show on the history channel about Thomas Jefferson, when he suddenly realized it was a perfect example of the scientific lens influencing Jefferson’s perceptions.

Another person told me that she was reading a book on spirituality that she had read many times before, but now she understands it more deeply because she can see how lenses of perception are involved.

Finding a deeper understanding of life—that is the part of the quantum revolution that we’ve been missing.

We’ve been told that quantum shenanigans only exist in the subatomic world. If this were true, then most people could easily ignore it, since it has little to do with their daily lives. However, it turns out that quantum theory is more important to people’s personal lives than any of the other great scientific discoveries.

Why? Because once we see how to understand it, it clarifies so much of what makes life mysterious. This doesn’t mean it ends the mystery in the way that objective analysis often does. On the contrary, it heightens the enigma and pulls us in.

"Single Water Drop" by Petr Kratochivil

“Single Water Drop” by Petr Kratochivil

Here’s an example: We connect with other people through our work, communities, friendships and families. Relationships expand the horizons of our individual lives. These bonds change us and give meaning to our existence. But none of this can be understood with a third-person lens, because it exists between people. It can’t be seen by outside observers. We have to experience it.

This is exactly what it means to be entangled. And this is exactly what quantum entanglement—perhaps the greatest mystery of quantum mechanics—is about. Relationships are real, but they only exist in between. They don’t belong to one person or another, they’re a connection between them.

When two particles become entangled, they are tied together in an invisible way. When something affects one, it affects the other as well. We experience the same thing. When a friend suffers or has a success, it affects us as well.

This isn’t just a similarity. These are examples of true quantum entanglement.

Once we find the right lens, we can see that our lives are woven into the universe.

Think of how this understanding would change your perception of science if this was a recognized lesson of quantum mechanics. Doesn’t it build a bridge between science and philosophy and religion?

It’s been more than a century since the revolution started. I’d say it is high time for quantum behavior to finally make sense, and for our culture to absorb the meaning of this great breakthrough.

The Lens of Science and Its Flaw

By Doug Marman

Our scientific way of looking at the world as outsiders was pioneered by Isaac Newton, over three hundreds years ago. People found it so effective at helping them understand mechanisms and mechanical reactions that it sparked the Industrial Revolution and our modern technological age.

It soon spread across the globe and is now used in almost every field. We use it so often that it’s almost invisible to us. It has, more than any other lens, shaped our ways of seeing. The problem is that it has a flaw that limits our perceptions.

To understand what this flaw is, we need to go back to Newton’s time and see how he first discovered his “laws of motion” and set down the fundamental principles of science. (For a more complete discussion of this subject, see chapter 3 in the book Lenses of Perception.)

Isaac wanted to know why the planets in our solar system circle around the sun. He had a hunch that gravity, the same force that causes apples to fall from trees, is the cause, but how could he prove it?

Newton wanted to understand the force that keeps the planets in orbit around our sun. Illustration by NASA.

Newton wanted to understand the force that keeps the planets in orbit around our sun. Illustration by NASA.

Newton invented a new type of math, called calculus, to describe the changing motion of the planets. Unfortunately, the general formula for changing rates of motion is infinite—it never ends. It looks like this:

The distance an object moves over time = V + ba2 + ca3 + da4 . . .

The three dots at the end means that it goes on and on forever. That makes it way too complicated to use.

Fortunately, Isaac knew what the formula was describing, so he saw a way to make it simpler. For example, if we’re studying an object moving through space at a constant speed, then the infinite equation reduces to this:

The distance an object moves over time = V

V” in this formula stands for the velocity of the object—in other words, how fast it is moving.

This became Newton’s first law of motion. It says that all things continue moving in the same direction, and at the same speed, unless they’re changed by a force. Until a force acts on them, their own momentum keeps them on the same path, moving at a steady pace.

This idea seems obvious to us today because we’re so used to thinking this way. But it was only sixty years before Newton that Galileo first proposed the idea. Galileo claimed that the Ancient Greek philosophers, who said that a force was needed to keep an object moving, were wrong. Newton showed that Galileo was right and this is a fundamental law of our universe.

To describe the movement of Earth around the sun, however, Isaac needed a different approach, since our planet is continually changing its direction. He couldn’t use the infinite formula produced by calculus, but he could reduce the equation to something simple if he once again limited his study to a special case. This time he focused on the change of motion produced by a single force. If that is all we care about, then the formula produced by calculus is:

Force = (m) x (a)

This is Newton’s second law of motion: Force is equal to the mass of an object (m) times the rate at which it accelerates (a). It tells us that acceleration is the direct result of the magnitude of the force. If a force is twice as strong, the object will accelerate twice as fast. It also says that, any time an object speeds up, slows down, or changes its course, a force must be driving it.

So, the impossibly complex formula for movement was reduced to two simple equations: One that describes steadily moving objects, where motion continues because of momentum, and the other describing a single force causing objects to accelerate.

This is the tool Newton discovered. It describes cause and effect and shows us how to study forces, one at a time, by seeing the changes they produce.

This idea was quickly adopted by every field of science. Even sociology, when it was first founded as a scientific study, used the principle to study the social forces that move people. Around the same time, Freud began describing the psychological forces that are motivating factors in human beings. And economists started seeing the economy as a closed system where prices were driven by the external forces of supply and demand.

What happens when a tool is used so often that it becomes common? It strongly shapes our way of seeing the world. (See What Are Lenses of Perception? for more information.) And this is exactly what happened, since everywhere we look today we see causation at work. Forces move objects, people, and economies.

In fact, within a hundred years after Newton published his laws of motion, it became common to talk about the universe and everything in it being driven by forces. All the stars, galaxies, planets, hurricanes, volcanic eruptions, and the whole world of nature was nothing but a giant clockwork.

Unfortunately, there’s a flaw in this lens. Can you see where it comes from?

The movements of creatures aren't driven by outside forces. Their actions spring from within. Scientists haven't been able explain this spontaneous behavior. Photo by Davy Siahaan.

The movements of creatures aren’t driven by outside forces. Their actions spring from within. Scientists haven’t been able explain this spontaneous behavior. Photo by Davy Siahaan.

Remember, Newton picked a special case to simplify the formula for motion. He looked at forces acting on objects from the outside. What about living creatures that change direction from within themselves? Can we apply Newton’s approach to see where the autonomous actions of organisms come from? Can we reduce the self-driven movements of plants and animals down to mechanisms? No, we can’t.

“Okay, we may not have the answer today, but every day we get smarter and smarter, learning more and more through new scientific discoveries. Surely, one day we’ll be able to understand the building blocks of life.

“But the problem isn’t a lack of intelligence. We’ve been running into this wall for hundreds of years. Brilliant people have tried solving it. We don’t need more brain power. We’re missing something basic.

“What if we can’t reduce life down because it’s impossible? The question staggered me. I had to think about it over and over. Could this be true? Finally, the realization hit me: Newton’s principle of cause and effect can’t help us answer this question because it tells us nothing about causes originating from within. It applies only to external forces.

“Does this mean that science will never, ever, be able to explain the secret of life? Never? No, but it suggests that we need a different approach. We need new tools and a fundamentally new lens to show us how powers can originate from within.”

From Lenses of Perception, page 28.

The lens of perception that formed from using Newton’s approach to study cause and effect is based on the idea that forces act on objects from the outside. In other words, it is a third-person perspective, as if we were standing outside of the action and looking in as observers. This is the lens of science. It’s a way of seeing that dominates scientific research today, even though it has a number of limitations.

For example, third-person lenses can’t see where forces originate, the intentions behind actions, or the purposes of those action, to name a few of the smaller issues. Most scientists treat these as pesky mosquitos. They’re easily ignored. And if you are dealing with mechanical reactions, they can be overlooked because they play no role.

However, if you only look for truth through third-person lenses, then these three little issues change your whole perspective. Reality no longer seems to have a purpose. You can’t see any meaning to life, since everything is just the result of a chain of reactions. One domino knocks over the next.

This is where the “post-modern” view of life comes from. It has infiltrated every aspect of society, especially our schools. This is the result of seeing only through third-person lenses.

Recently, the problem has grown much bigger, however, since we find ourselves faced with the paradoxes of quantum mechanics and the bizarre behavior of sub-atomic particles. And leading biologists have come to the conclusion that we not only can’t explain the origin of life, we don’t even know where to start looking for an answer.

Plus, physicists discovered a serious problem with the way our universe evolved. For some reason it seems to be exactly designed for life to exist. They don’t know why. This is made worse by the fact that science doesn’t know why life exists in the first place.

Living things possess a spark that cannot be explained by mechanical reactions. Their actions cannot be predicted by any laws. The lens of science can't make sense of it, but other lenses can. Photo by Davy Siahaan

Living things possess a spark that cannot be explained by mechanical reactions. Their actions cannot be predicted by any laws. Third-person lenses can’t make sense of it, but other lenses can. Photo by Kristof Degreef.

And how do our minds move our bodies? Science is no closer to answering this question today than it was two hundred years ago. We simply don’t know. Or how does consciousness emerge from brains, as most biologists believe? No one can explain it.

It turns out that all of these issues, plus many more, originate from the flaw in the lens of science. We need a new approach—a new way of seeing to make sense of these mysteries. A new lens that helps us see things not only from the outside, but from the inside as well.

“Don’t fall for the story that organisms are complicated, as if this explains why reducing them down is difficult. What if life is irreducible? What if we’ve been missing something? What if a new lens could reveal the problem? Then, as Rosen says, “the consequences are profoundly revolutionary.”

“Imagine finding new principles as simple as Newton’s laws of motion that can fill in the missing picture and explain life. If Isaac’s laws of motion changed our world dramatically, imagine how these new principles will transform our ability to see and understand.”

From Lenses of Perception, page 40.

See also the next in this series: A New Foundation for Science

What are Lenses of Perception?

By Doug Marman

Lenses are ways of seeing. They frame everything we perceive. They make sense of the situations we find ourselves in, the people we meet—even the ways we see ourselves. They allow us to understand everything from science and art to relationships and teamwork.

We can recognize drops of water on a window because we have a lens that shows us what they are. Photo by kappachan.

We recognize drops of water on a window because we have a lens that shows us what they are. Photo by kappachan.

For example, the image of a plane flying across the sky makes sense because we have a lens that shows us what it is. We learned what planes are as children. We know that there are people inside, they aren’t as tiny as they  look, and they move faster than they seem.

We also learned to recognize when someone is angry or when a mother is worried because she lost track of her child while shopping. Lenses gives us the ability to bring the world into focus, to put things in perspective.

We literally can’t fathom anything without lenses. Psychologists call them “perceptual sets” because they bundle our comprehension of events, people, and situations.

Why Do Lenses Matter?

Because they subconsciously shape our perceptions and and limit what we see. Lenses also play deep roles in the foundations of our physical world. They define time and space and explain how our universe came into existence.

A deeper understanding of lenses of perception gives us new insights into the foundation of science itself—why science is distinct from other fields. And it shows us how to expand the reach of science to understand the origin of life and the paradoxical nature of quantum mechanics. (For more on this see The Lens of Science and Its Flaw.)

Lenses allow us to focus and see clearly, but they also limit what we see. Photo by g baden.

Lenses allow us to focus and see clearly, but they also limit what we see. Photo by g baden.

Why are lenses so powerful? Because they are formed from using tools. The more a tool changes our life the more it shapes what we see.

For example, the introduction of cars, trains, and planes gave people the chance to visit and see far away places for the first time. Their lives changed. The feeling of being rooted to a place gave way to a sense of freedom and the desire to explore. Children began moving away from their families as they grew up. Ties to their communities became weaker. People today see the world differently.

The invention of television had a similar impact. The generation who first grew up with TV began picturing the events of their lives as if they were watching a screen in their minds. Visual images became more important. They know more about the whole world, but have lost touch with their next-door neighbors, as sitting on a front porch together was replaced by TV.

A similar change took place two thousand years earlier when the written word became popular. According to Plato, the wisdom that had been passed down from generation to generation through audible stories was lost. It was replaced by a false sense of truth found in books. Plato was right about this change, however, it also created a boom in linear thinking. Mathematics and philosophy blossomed. In fact, we only know about Plato because of the books he wrote.

All great leaps in civilization come from the use of new tools. Spoken language, the written word, the cultivation of crops and livestock—all changed us and the way we see life.

In other words, beliefs and thoughts are secondary. We got it backwards. Our beliefs don’t define the way we see. Lenses are the true source. They shape our beliefs. Our ways of seeing emerge subconsciously. We learn, first and foremost, from our experiences.

We have a saying: You need to walk a mile in another person’s shoes to know them. Unfortunately, it isn’t that simple. Accountants and actors have different lenses. Artists and scientists are so different that they rarely cross paths. The gap that separates generations can be significant, even between people who have lived with each other for years.

Modern world has become fragmented because we have become a society of specialists. Photo by g baden.

Our modern world has become fragmented because we have become a society of specialists. Photo by Benjamin Earwicker.

We see breakdowns in communication because we use different tools and have different experiences growing up. We are often baffled by people. How can some be so cruel? Why don’t they see humor in a situation the way we do?

Our modern civilized world is more divided than ever. We have fragmented into a growing number of special interests for a simple reason: We have increasingly become a society of specialists. Specialized skills make us more valuable, but they also distance us from each other. We are like ships passing in the night. This is the problem of our times.

It isn’t just our understanding of each other. The same obstacles making it “impossible” for physicists to understand the quantum world, or to crack the puzzle of organic life.

There is an answer. We simply need to find different lenses.

Unfortunately, this isn’t as easy as it sounds. We have to let go of our way of seeing before we can switch to another lens. This is often unsettling. It means losing our sense of who we are and how we fit in the world. Next, we must pass through a zone where it feels as if something is seriously wrong. Only then can we truly understand another lens.

That’s the psychological barrier standing in our way. It’s a significant one. And this is why people fight so hard to hang onto their ways of seeing, pitting themselves against others.

It all happens because letting go of our lens feels threatening at an unconscious level. This single problem has held us back in countless ways. It stunts our ability to grow and understand. Sometimes we can’t see what is even right before our eyes.

The root of the problem is that we keep trying to see all of life through one lens.

Rational thought and logic isn’t the answer. Belief isn’t the problem. We need to learn how to change lenses and see in new ways. We need to realize that these uncomfortable feelings are normal and they are signs that we’re growing. Once we do, the world makes a lot more sense—even the unpredictable behavior of sub-atomic particles.

NEW BOOK: Lenses of Perception

A Surprising New Look at the Origin of Life, the Laws of Nature, and Our Universe

By Doug Marman

“An important work for scientists who have suspected consciousness and subjective perceptions are fundamental to the universe and not some accidental epi-phenomenon. Marman’s work brings first-, second-, and third-person points of view into the fabric of the universe. The reader will never look at the world the same.”

Michael Clarage, PhD, Physicist

How did the universe come into existence out of nothing? Why is biological life irreducible? What are the deeper principles that create the laws of nature?


Lenses of Perception reads like a detective novel, as it dives into the foundations of physical reality and discovers the surprising role of consciousness. The evidence comes from experiments run by leading scientists.

Our scientific way of looking at the world as outsiders was pioneered by Isaac Newton. This third-person “lens of perception” allows us to objectively analyze forces with incredible precision. It ushered in our age of technology. But the limitations of this lens are clear.

It can’t explain the paradoxes of quantum mechanics or figure out how life began. It doesn’t even see consciousness, since awareness is invisible to outsiders. This is why physicists have been struggling with the same problems for more than forty years. Some call it a crisis. Many believe something big is missing.

Lenses of Perception offers promising solutions to “The Five Unsolved Problems of Physics” and new insights into how our mind controls our body—a puzzle that has baffled scientists and philosophers for hundreds of years. You will also see explanations for the biggest leaps in evolution, such as the origin of life and multicellular creatures.

These mysteries can all be explained using the same tools. Not with theoretical concepts, but through three simple fundamental ways of seeing.

ISBN 978-0-9793260-3-5 / 512 pages / $19.90

Click link above to Buy Now from our website.

Or click image below to buy from Amazon.




What are lenses of perception? Simply put, they’re ways of seeing. We change lenses when looking at the world in different ways. Seems simple enough. We all do it, partially, when we relate to another person, dive into the artificial reality of a movie, or think outside the box.

However, if we want to be more than just a tourist and truly understand how life looks through a different lens, we need to first let go of everything holding us to our old worldview. Then we must pass through a zone of confusion and bewilderment. We feel lost until another lens makes sense. Only then can we fully adjust to a new perspective. Who wants to go that far?

This is why breakdowns in communication are so common. Without a strong desire to understand, other points of view seem wrong and confused.

Thus, in our age of specialists, we’re more like ships passing in the night. We rarely realize how different our perspectives are. It’s easy to write everyone else off as fools. The problem is that we look just as foolish to them.

More importantly, learning to switch lenses is a vital necessity in a society changing as fast as ours. It’s the only way our inner selves can adapt and keep up. If we avoid the path of wisdom and understanding and focus only on objective knowledge, modern culture soon seems alien and wrong to us. We see ourselves as outsiders and feel disconnected. Adjusting our lenses of perception allows us to connect at a deeper level, where we can see that things do make sense.

Here’s an example: The first major earthquake I experienced registered 5.4 on the Richter scale. It was powerful enough to make the ground beneath the San Francisco Bay area move in long undulating waves, as if it were fluid. The illusion of solidity vanished. I felt more like a surfer than someone standing on firm land. My sense of location disappeared as the earth itself flowed beneath my feet.

People around me screamed and froze, not knowing what to do. Others ran outside. However, a few old-timers smiled and calmly walked to the door. One of them said, “It’s nice to feel one once in a while.”

They’d been through the experience before. They knew what earthquakes feel like, so it didn’t shake them to their core. They retained a sense of orientation because they learned another way of seeing.

We don’t like changing lenses. Most of us fight tooth and nail to avoid the feeling of nausea that comes from a new mindset.

We build up our defenses to hang onto our picture of the world, whether philosophical, religious, or scientific.

If we can pry our fingernails free from our precious perspectives and let go of our death grip, we can discover new perceptions we’ve never seen before. These experiences alter our understanding in deep ways. They shine new lights on who we are.

Shifting perspectives not only broadens our understanding of other cultures; it also allows us to peer deeper into nature, solving mysteries that science has pondered for hundreds of years. When I first sat down to write this book, I had no answers to the questions of quantum physics. I didn’t know what was missing from Newton’s laws of motion. I sensed that the theory of evolution was incomplete, but I didn’t know why. I had no explanation for the mind-body problem or the scientific enigma known as “emergence.” The five unsolved problems of physics seemed inscrutable.

I only knew from experience that, when I changed lenses, I found an added level of comprehension. I learned this after making a practice of switching points of view, as an experiment, to explore the nature of consciousness. This doesn’t mean that a new perspective, by itself, gives us better insight. No, it’s the contrast. Seeing from another angle adds context.

While writing this book, I soon realized that I’d underestimated the importance of this simple tool of changing points of view. It’s far more powerful than I realized.

It not only offers the key to seeing in the dark, you might say, and getting to know realms that are new and unknown to us, it also restores our sense of wholeness to life. It bridges the gap between science, philosophy, the arts, and the spiritual experience of being. This is what happens when we connect with nature at a deeper level.

However, explaining lenses of perception isn’t easy. It’s hard wrapping our brains around the impact they have on us. Reading about them isn’t enough to see how deeply they affect our connection with the world. If we want to understand—to truly understand—we need to experience changes in our way of seeing firsthand. That’s what this book attempts to do.

Successful writers know the importance of “showing” rather than “telling.” A good story pulls us into a world where the scene unfolds as if we were there. Telling gives us only a clinical, literal description; it doesn’t move us to a new perspective.

So, to explain lenses of perception properly, I’ll be using words poetically at times to evoke new views of the world, even when talking about science. This is how we can find what is hidden in plain sight.

But words can’t pull this off alone. The reader must do some heavy lifting. This book is more like a tour guide. We are, in a sense, going on a jungle safari to explore untamed points of view. Hopefully your mind will be boggled. That’s the point of this journey.

I’ll start with familiar views of the world. At first you can retain your normal way of seeing and thinking. Yet the quest soon takes us into dense underbrush where the most valuable treasures are hidden. If we want to unearth the gold, we must let go of the way we usually see reality.

That’s where we discover that lenses of perception are not just tools that help us understand the world, they’re fundamental to reality itself. We’ll see the scientific evidence that supports this.

To make such a leap requires a completely different mindset. It will probably feel unsettling at times when the ground starts shifting. New perspectives can shake us to our core. This is true for everyone. I experience the same thing.

If a section of this book leaves you feeling disturbed, even if in a subtle way, try setting it down for a while. Give the ideas a chance to percolate. Then go back and read the section again. You might be surprised. Remember, the goal here is to experience the uncomfortable feeling of confusion and then, breaking through that, to learn how we can change the way we see.

When writing this book, I didn’t expect to be pulled into questions about the laws of nature. I was simply trying to understand the problems of our modern times and see where the story led. Each chapter took me by surprise, as if the sails of my ship were being blown onto a new course by powerful winds. The thread of the story kept leading to deeper and deeper insights. I found myself farther from shore than expected, facing a whole new view of the world and the meaning of human understanding.

If you’re interested in a wild ride, buckle your seatbelt. Then join me on the path of discovery I took to find the dimension of life that scientists have been missing. We’ll use new tools to guide us: lenses of perception.

Click to download a longer excerpt