The Experience of Consciousness vs Knowing Our Own Mind

By Doug Marman

The New York Times just ran an opinion piece that is a good example about how articles on neuroscience often get the big issues wrong.

Photo by Miranda Knox.

Picture by Miranda Knox.

The author, Alex Rosenberg, isn’t ignorant of the topic. He’s a co-director of the Center for the Social and Philosophical Implications of Neuroscience. In other words, he is fully informed of the science of the brain. So, he clearly has every right to state his opinions. Unfortunately, he misses the point badly.

Right from the opening paragraph, Rosenberg misdirects and misrepresents the issue. I don’t mean to say that he is doing this intentionally. I believe he is stating the problem honestly as he sees it. He’s just using the wrong lens.

Here is how he begins: Ever since Plato, philosophers have made it sound like a truism that we know the reality of our own thoughts:

“They have argued that we can secure certainty about at least some very important conclusions, not through empirical inquiry, but by introspection: the existence, immateriality (and maybe immortality) of the soul, the awareness of our own free will, meaning and moral value.”[1]

Rosenberg then goes on to berate two recent authors for continuing with this tradition, as if something that seems so fundamentally true can “trump science.” Not so, he tells us. We might think that we know what’s going on in our own minds, but numerous studies show that this simply isn’t true. We don’t know.

Here’s the first problem with this article: Plato wasn’t talking about knowing our mind. He was talking about knowing our self. He never said that we can ever truly know our own mind our even the true nature of our thoughts. The fundamental truth that Plato and many other philosophers have pointed to is the experience of being conscious.

Using “introspection” to study our thoughts isn’t even in the same ballpark as the experience of consciousness. Experiences are far more fundamental than thoughts.

A lot of neuroscientists mix these up. They do so for a good reason: They are using third-person lenses. In other words, they are taking the traditional scientific approach of viewing the matter as if they are outside observers—as if they are completely outside of the mind or the experience of consciousness and looking in. This is the objective approach, and it has long been used in science for a good reason, because it is excellent at understanding cause-and-effect relationships like we see in mechanisms and chemical reactions.

However, this is the wrong lens to use for understanding the experience of consciousness. If we insist on using a third-person approach, then we have assured our failure to see it at all. The only way to understand the nature of experience is through experience, not by mental analysis.

Trying to understand the mind by thinking about it with the mind is like trying to find reality in a hall of mirrors. Photo by Bjoern Lotz.

Trying to understand the mind by thinking about it with the mind is like trying to find reality in a hall of mirrors. Photo by Bjoern Lotz.

We might as well use a telescope to look for microbes in a drop of water. We will see nothing. Even worse, we can fool ourselves into thinking that microbes don’t even exist, because we can’t see them.

We need to use the right lens, the right tool. In this case, the only perspective that works is a “first-person” lens. This is how we experience everything, whether it be a new car, eating lunch with a friend, or our own consciousness. Every experience is a first-person perception.

What does an experience mean? That’s a different story. That’s a question we ask with our minds, as if we could interpret an experience or reduce it down to a thought. As soon as we start thinking about our experiences we’ve left the first-person world behind.

Therefore, the point that Rosenberg is making does not prove that science trumps experience. Quite the opposite. It shows us that science doesn’t understand consciousness. This is exactly why philosopher David Chalmers calls consciousness the hard problem. He writes:

“Consciousness poses the most baffling problems in the science of the mind. There is nothing that we know more intimately than conscious experience, but there is nothing that is harder to explain.”[2]

Third-person lenses don’t work because they move us outside the world of experience. Outsiders can’t see consciousness. This is why we need to use a first-person lens. Chalmers says the same thing:

“If one takes the third-person perspective on oneself—viewing oneself from the outside, so to speak—these reactions and abilities are no doubt the main focus of what one sees. But the hard problem is about explaining the view from the first-person perspective.”[3]

Unfortunately, this isn’t the only problem with Rosenberg’s article. In his zeal to show how much scientific evidence there is that we don’t know our mind, he makes some rather serious blunders. He writes:

“In fact, controlled experiments in cognitive science, neuroimaging and social psychology have repeatedly shown how wrong we can be about our real motivations, the justification of firmly held beliefs and the accuracy of our sensory equipment. This trend began even before the work of psychologists such as Benjamin Libet, who showed that the conscious feeling of willing an act actually occurs after the brain process that brings about the act—a result replicated and refined hundreds of times since his original discovery in the 1980s.”

The first sentence in the above paragraph is right. Subconscious influences affect our choices and decisions all the time. We often try to “explain” our behavior as if it is rational, when, in fact, our subconscious colors everything we do. So, the point Rosenberg is making—that we don’t fully know our own minds—is right.

It’s the second sentence that is the problem. Benjamin Libet did not show “that the conscious feeling of willing an act actually occurs after the brain process that brings about the act…” And no other experiment has proven this either. It is easy to show why Rosenberg is just plain wrong about this. Here is how I explained it in my book,

“None of the experiments show the brain making a decision before the person did. Scientists can’t prove such a claim, since they have no way of determining when a choice is made. Decision-making is a subjective process. They can’t observe it scientifically. No instrument can measure the act of choosing. They can only detect outer activity in the brain, not the inner content of consciousness.”[4]

In fact, not only is Rosenberg wrong about what Libet’s experiment shows us, there are quite a few experiments that contradict his conclusion and one shows clearly that he is wrong. In that case, the “readiness potential” brain signals that Libet detected show up whether a person decides to do something or not, so they can’t be an indicator of a decision being made:

“Judy Trevena and Jeff Miller, psychologists from New Zealand, asked a group of subjects to press a key every time they heard a tone. A second group was told to do the same thing—press a key on a computer after a tone sounds—but only half of the time. It was their choice when to push the button and when not to.

“It didn’t matter whether the subjects in the second group pressed the key or not, the same readiness potential signals were detected. This is proof that this brain activity is not the same as a conscious decision. In fact, it suggests that the term ‘readiness potential’ was right all along. The brain is simply getting ready to act.”[5]

Rosenberg makes the matter worse. He goes on to say: “there is compelling evidence” that our own self-awareness is simply our brain trying to guess at what we ourselves might be thinking. This is a misrepresentation. I’m giving Rosenberg the benefit of the doubt when I say this.

If you interpret “self-awareness” the way I do, as the experience of our own consciousness, then Rosenberg is flat out wrong. But I think what Rosenberg is getting at here is that we often guess about our own behavior and our intentions, the same way we guess at the intentions of others. He is absolutely right about that, but this is not the basis of our self-awareness.

If Rosenberg limited his conclusion to the ideas that we form about ourselves and the picture we might have of who we are, then I would agree with him. But that isn’t self-awareness. That’s our ego he is talking about—the image we have about who we are and how we fit in the world.

Self-awareness is something we gain through the direct experience of our consciousness. No thought involved. No guesswork. It is purely an experience—not an interpretation. That’s what makes this an issue that “trumps science.” Science can’t crack that nut, but we can prove to ourselves the reality of it through our own awareness.

Then Rosenberg really does it. He makes an absolutely ridiculous statement that has no scientific foundation at all, while acting as if it is shored up by empirical evidence. He writes:

“The upshot of all these discoveries is deeply significant, not just for philosophy, but for us as human beings: There is no first-person point of view.”

Photo by Gabor Kalman

Photo by Gabor Kalman

Here is the logic that Rosenberg just used to arrive at this conclusion: If you first decide to use a third-person lens, and only a third-person lens, to study the problem, then you will discover that first-person perception doesn’t exit.

Well of course it doesn’t exist if you use a lens that requires you to be an outsider looking in. How could you ever experience consciousness that way? How could you ever experience anything?

What’s the real upshot of all this? Science can’t see, detect, measure, or photograph the experience of consciousness. So, what do some scientists do? Well, they make up a story as if they understood the mind well enough to know that it is just making up the experience of consciousness. In other words, they are doing exactly what Rosenberg was telling us the mind does: guessing at the things it doesn’t understand.

If Rosenberg is right that we can’t know our mind through introspection, and I agree with him on this, then how could anyone ever come to the conclusion that the mind is fabricating the experience of consciousness? That makes no sense.

If a person is smart enough to make such a statement, why wouldn’t they be smart enough to realize that the only way it could be true is if they really did understand their mind?

It baffles me. I don’t have the answer to this question, but if you do, please explain it to me. I really would like to know.

[1] Alex Rosenberg, “Why You Don’t Know Your Own Mind,” The New York Times, July, 18, 2016.

[2] David J. Chalmers, “Facing up to the Problem of Consciousness,” Journal of Consciousness Studies 2, no. 3 (1995), p. 200. Also posted on

[3] David J. Chalmers, “Moving Forward on the Problem of Consciousness,” Journal of Consciousness Studies 4, no. 1 (1997), p. 3–46, Section 2.2. Also posted on moving.html.

[4] Doug Marman, Lenses of Perception: A Surprising New Look at the Origin of Life, the Laws of Nature, and Our Universe (Washington: Lenses of Perception Press, 2016), p. 277.

[5] Ibid., p. 278-281.

This is Your Brain on Religion — This is Your Brain on Science

By Doug Marman

The main premise of the Lenses of Perception theory is that there are fundamental lenses—ways of seeing—and we can only perceive through one lens at a time. A recent series of experiments validates this idea.

Researchers from Case Western University and Babson College published a study three weeks ago titled, Why Do You Believe in God? Relationships between Religious Belief, Analytic Thinking, Mentalizing and Moral Concern.

Their test results show that when people think of religious matters, their brains suppress critical thinking. And when they focus on scientific topics, their brain suppresses religious thoughts.

“It suggests religious beliefs and scientific thinking clash because different brain areas are involved in both cognitive processes.”[1]

Thinking about science and thinking about religion requires two different brain networks, and both networks suppress the other. ("Say your prayer" photo by Joachim Bär. Eucaryote cell illustration from Wikipedia.)

Thinking about science and thinking about religion require two different brain networks, and both networks suppress the other. (“Say your prayer” photo by Joachim Bär. Eucaryote cell illustration from Wikipedia.)

In other words, the experiments showed clearly that working with science involves one brain network, while religion works with a completely different network. And the two networks interfere with the other, making it hard to use both at the same time.

The fact that these brain networks clash with each other is one reason we see conflicts between religious belief and science. However, lenses of perception theory suggests that this isn’t the underlying cause.

Our brains evolved these two networks for a reason: The world is governed by different ways of seeing. This isn’t just about the lenses that human beings use. It reaches all the way down to the level of subatomic particles.

Everything works this way because the world isn’t created by outer forces. It comes into existence through conscious experiences, at every level. That’s why perception plays such an important role.

For example, the scientific perspective uses a third-person lens. That’s the lens we use when looking at the world as if we’re outside observers. This turns out to be the best approach for studying mechanical reactions because particles go along with the outsider perspective. This is why, when trying to analyze a cause-and-effect process, third-person lenses give us the clearest picture of what’s happening.

But the world isn’t just mechanical. Relationships also hold groups together and connect beings to each other. These ties emerge from second-person experiences, created by common interests shared with others.

Second-person perceptions are the basis of all relationships. However, they come in two distinct forms.

First, there is a sense of empathy that allows us to relate one-on-one with another person or animal. We experience this with friends and our pets when we connect with them.

When someone we care about is in pain, we actually feel it. At the subatomic level this is known as entanglement. If two particles become entangled, they literally form an invisible alignment that reaches across time and space. This is one of the many mind-boggling features of quantum physics that make sense when we see them as relationships.

The second type of second-person perception gives us our moralistic sense of the right thing to do. Moral concerns emerge from connections to groups such as communities we belong to, companies we work for, or even our feeling for the human race or the whole of life. Working together with others shows us that we can create something greater as part of a group.

This is where our sense of responsibility comes from. We want to contribute. We want our lives to mean something. I call this the “all-for-one bond,” because it’s a special relationship that team members have with each other when working toward a singular goal.

At the level of fundamental particles, the same force holds atoms together. And in biology, cells bind to the organisms they belong to for the same reason.

So, our brain evolved ways of seeing these patterns of behavior because the world is shaped by these relationships.

The research paper, above, ran tests to see the difference between empathy and moral concern. They wanted to determine how each of these two types of relationship relate to religious belief. Surprisingly, they found that only the moralistic sense showed a strong connection. Empathy played hardly any role at all in the religious experience.

This is exactly what the lenses of perception theory predicts. Religion comes from our sense that there is a higher purpose to life and that a life with meaning comes from working with others for something beyond ourselves. This doesn’t belong to religion alone. Scientists also feel the sense of purpose that comes from working with others for the advancement of science.

This raises another interesting point reported by the above paper: There is no reason why we can’t move back and forth between religion and science, between our moral sense and an analytic perspective. We simply need to learn that they engage two different ways of seeing. Two different brain networks are involved. This means that we need to change lenses when shifting from one to the other.

“The study also points out that some of the great scientists of our times were also very spiritual men. ‘Far from always conflicting with science, under the right circumstances religious belief may positively promote scientific creativity and insight,’ says Tony Jack, lead author of the study. ‘Many of history’s most famous scientists were spiritual or religious. Those noted individuals were intellectually sophisticated enough to see that there is no need for religion and science to come into conflict.’”[2]



The Lens of Science and Its Flaw

By Doug Marman

Our scientific way of looking at the world as outsiders was pioneered by Isaac Newton, over three hundreds years ago. People found it so effective at helping them understand mechanisms and mechanical reactions that it sparked the Industrial Revolution and our modern technological age.

It soon spread across the globe and is now used in almost every field. We use it so often that it’s almost invisible to us. It has, more than any other lens, shaped our ways of seeing. The problem is that it has a flaw that limits our perceptions.

To understand what this flaw is, we need to go back to Newton’s time and see how he first discovered his “laws of motion” and set down the fundamental principles of science. (For a more complete discussion of this subject, see chapter 3 in the book Lenses of Perception.)

Isaac wanted to know why the planets in our solar system circle around the sun. He had a hunch that gravity, the same force that causes apples to fall from trees, is the cause, but how could he prove it?

Newton wanted to understand the force that keeps the planets in orbit around our sun. Illustration by NASA.

Newton wanted to understand the force that keeps the planets in orbit around our sun. Illustration by NASA.

Newton invented a new type of math, called calculus, to describe the changing motion of the planets. Unfortunately, the general formula for changing rates of motion is infinite—it never ends. It looks like this:

The distance an object moves over time = V + ba2 + ca3 + da4 . . .

The three dots at the end means that it goes on and on forever. That makes it way too complicated to use.

Fortunately, Isaac knew what the formula was describing, so he saw a way to make it simpler. For example, if we’re studying an object moving through space at a constant speed, then the infinite equation reduces to this:

The distance an object moves over time = V

V” in this formula stands for the velocity of the object—in other words, how fast it is moving.

This became Newton’s first law of motion. It says that all things continue moving in the same direction, and at the same speed, unless they’re changed by a force. Until a force acts on them, their own momentum keeps them on the same path, moving at a steady pace.

This idea seems obvious to us today because we’re so used to thinking this way. But it was only sixty years before Newton that Galileo first proposed the idea. Galileo claimed that the Ancient Greek philosophers, who said that a force was needed to keep an object moving, were wrong. Newton showed that Galileo was right and this is a fundamental law of our universe.

To describe the movement of Earth around the sun, however, Isaac needed a different approach, since our planet is continually changing its direction. He couldn’t use the infinite formula produced by calculus, but he could reduce the equation to something simple if he once again limited his study to a special case. This time he focused on the change of motion produced by a single force. If that is all we care about, then the formula produced by calculus is:

Force = (m) x (a)

This is Newton’s second law of motion: Force is equal to the mass of an object (m) times the rate at which it accelerates (a). It tells us that acceleration is the direct result of the magnitude of the force. If a force is twice as strong, the object will accelerate twice as fast. It also says that, any time an object speeds up, slows down, or changes its course, a force must be driving it.

So, the impossibly complex formula for movement was reduced to two simple equations: One that describes steadily moving objects, where motion continues because of momentum, and the other describing a single force causing objects to accelerate.

This is the tool Newton discovered. It describes cause and effect and shows us how to study forces, one at a time, by seeing the changes they produce.

This idea was quickly adopted by every field of science. Even sociology, when it was first founded as a scientific study, used the principle to study the social forces that move people. Around the same time, Freud began describing the psychological forces that are motivating factors in human beings. And economists started seeing the economy as a closed system where prices were driven by the external forces of supply and demand.

What happens when a tool is used so often that it becomes common? It strongly shapes our way of seeing the world. (See What Are Lenses of Perception? for more information.) And this is exactly what happened, since everywhere we look today we see causation at work. Forces move objects, people, and economies.

In fact, within a hundred years after Newton published his laws of motion, it became common to talk about the universe and everything in it being driven by forces. All the stars, galaxies, planets, hurricanes, volcanic eruptions, and the whole world of nature was nothing but a giant clockwork.

Unfortunately, there’s a flaw in this lens. Can you see where it comes from?

The movements of creatures aren't driven by outside forces. Their actions spring from within. Scientists haven't been able explain this spontaneous behavior. Photo by Davy Siahaan.

The movements of creatures aren’t driven by outside forces. Their actions spring from within. Scientists haven’t been able explain this spontaneous behavior. Photo by Davy Siahaan.

Remember, Newton picked a special case to simplify the formula for motion. He looked at forces acting on objects from the outside. What about living creatures that change direction from within themselves? Can we apply Newton’s approach to see where the autonomous actions of organisms come from? Can we reduce the self-driven movements of plants and animals down to mechanisms? No, we can’t.

“Okay, we may not have the answer today, but every day we get smarter and smarter, learning more and more through new scientific discoveries. Surely, one day we’ll be able to understand the building blocks of life.

“But the problem isn’t a lack of intelligence. We’ve been running into this wall for hundreds of years. Brilliant people have tried solving it. We don’t need more brain power. We’re missing something basic.

“What if we can’t reduce life down because it’s impossible? The question staggered me. I had to think about it over and over. Could this be true? Finally, the realization hit me: Newton’s principle of cause and effect can’t help us answer this question because it tells us nothing about causes originating from within. It applies only to external forces.

“Does this mean that science will never, ever, be able to explain the secret of life? Never? No, but it suggests that we need a different approach. We need new tools and a fundamentally new lens to show us how powers can originate from within.”

From Lenses of Perception, page 28.

The lens of perception that formed from using Newton’s approach to study cause and effect is based on the idea that forces act on objects from the outside. In other words, it is a third-person perspective, as if we were standing outside of the action and looking in as observers. This is the lens of science. It’s a way of seeing that dominates scientific research today, even though it has a number of limitations.

For example, third-person lenses can’t see where forces originate, the intentions behind actions, or the purposes of those action, to name a few of the smaller issues. Most scientists treat these as pesky mosquitos. They’re easily ignored. And if you are dealing with mechanical reactions, they can be overlooked because they play no role.

However, if you only look for truth through third-person lenses, then these three little issues change your whole perspective. Reality no longer seems to have a purpose. You can’t see any meaning to life, since everything is just the result of a chain of reactions. One domino knocks over the next.

This is where the “post-modern” view of life comes from. It has infiltrated every aspect of society, especially our schools. This is the result of seeing only through third-person lenses.

Recently, the problem has grown much bigger, however, since we find ourselves faced with the paradoxes of quantum mechanics and the bizarre behavior of sub-atomic particles. And leading biologists have come to the conclusion that we not only can’t explain the origin of life, we don’t even know where to start looking for an answer.

Plus, physicists discovered a serious problem with the way our universe evolved. For some reason it seems to be exactly designed for life to exist. They don’t know why. This is made worse by the fact that science doesn’t know why life exists in the first place.

Living things possess a spark that cannot be explained by mechanical reactions. Their actions cannot be predicted by any laws. The lens of science can't make sense of it, but other lenses can. Photo by Davy Siahaan

Living things possess a spark that cannot be explained by mechanical reactions. Their actions cannot be predicted by any laws. Third-person lenses can’t make sense of it, but other lenses can. Photo by Kristof Degreef.

And how do our minds move our bodies? Science is no closer to answering this question today than it was two hundred years ago. We simply don’t know. Or how does consciousness emerge from brains, as most biologists believe? No one can explain it.

It turns out that all of these issues, plus many more, originate from the flaw in the lens of science. We need a new approach—a new way of seeing to make sense of these mysteries. A new lens that helps us see things not only from the outside, but from the inside as well.

“Don’t fall for the story that organisms are complicated, as if this explains why reducing them down is difficult. What if life is irreducible? What if we’ve been missing something? What if a new lens could reveal the problem? Then, as Rosen says, “the consequences are profoundly revolutionary.”

“Imagine finding new principles as simple as Newton’s laws of motion that can fill in the missing picture and explain life. If Isaac’s laws of motion changed our world dramatically, imagine how these new principles will transform our ability to see and understand.”

From Lenses of Perception, page 40.

See also the next in this series: A New Foundation for Science

NEW BOOK: Lenses of Perception

A Surprising New Look at the Origin of Life, the Laws of Nature, and Our Universe

By Doug Marman

“An important work for scientists who have suspected consciousness and subjective perceptions are fundamental to the universe and not some accidental epi-phenomenon. Marman’s work brings first-, second-, and third-person points of view into the fabric of the universe. The reader will never look at the world the same.”

Michael Clarage, PhD, Physicist

How did the universe come into existence out of nothing? Why is biological life irreducible? What are the deeper principles that create the laws of nature?


Lenses of Perception reads like a detective novel, as it dives into the foundations of physical reality and discovers the surprising role of consciousness. The evidence comes from experiments run by leading scientists.

Our scientific way of looking at the world as outsiders was pioneered by Isaac Newton. This third-person “lens of perception” allows us to objectively analyze forces with incredible precision. It ushered in our age of technology. But the limitations of this lens are clear.

It can’t explain the paradoxes of quantum mechanics or figure out how life began. It doesn’t even see consciousness, since awareness is invisible to outsiders. This is why physicists have been struggling with the same problems for more than forty years. Some call it a crisis. Many believe something big is missing.

Lenses of Perception offers promising solutions to “The Five Unsolved Problems of Physics” and new insights into how our mind controls our body—a puzzle that has baffled scientists and philosophers for hundreds of years. You will also see explanations for the biggest leaps in evolution, such as the origin of life and multicellular creatures.

These mysteries can all be explained using the same tools. Not with theoretical concepts, but through three simple fundamental ways of seeing.

ISBN 978-0-9793260-3-5 / 512 pages / $19.90

Click link above to Buy Now from our website.

Or click image below to buy from Amazon.




What are lenses of perception? Simply put, they’re ways of seeing. We change lenses when looking at the world in different ways. Seems simple enough. We all do it, partially, when we relate to another person, dive into the artificial reality of a movie, or think outside the box.

However, if we want to be more than just a tourist and truly understand how life looks through a different lens, we need to first let go of everything holding us to our old worldview. Then we must pass through a zone of confusion and bewilderment. We feel lost until another lens makes sense. Only then can we fully adjust to a new perspective. Who wants to go that far?

This is why breakdowns in communication are so common. Without a strong desire to understand, other points of view seem wrong and confused.

Thus, in our age of specialists, we’re more like ships passing in the night. We rarely realize how different our perspectives are. It’s easy to write everyone else off as fools. The problem is that we look just as foolish to them.

More importantly, learning to switch lenses is a vital necessity in a society changing as fast as ours. It’s the only way our inner selves can adapt and keep up. If we avoid the path of wisdom and understanding and focus only on objective knowledge, modern culture soon seems alien and wrong to us. We see ourselves as outsiders and feel disconnected. Adjusting our lenses of perception allows us to connect at a deeper level, where we can see that things do make sense.

Here’s an example: The first major earthquake I experienced registered 5.4 on the Richter scale. It was powerful enough to make the ground beneath the San Francisco Bay area move in long undulating waves, as if it were fluid. The illusion of solidity vanished. I felt more like a surfer than someone standing on firm land. My sense of location disappeared as the earth itself flowed beneath my feet.

People around me screamed and froze, not knowing what to do. Others ran outside. However, a few old-timers smiled and calmly walked to the door. One of them said, “It’s nice to feel one once in a while.”

They’d been through the experience before. They knew what earthquakes feel like, so it didn’t shake them to their core. They retained a sense of orientation because they learned another way of seeing.

We don’t like changing lenses. Most of us fight tooth and nail to avoid the feeling of nausea that comes from a new mindset.

We build up our defenses to hang onto our picture of the world, whether philosophical, religious, or scientific.

If we can pry our fingernails free from our precious perspectives and let go of our death grip, we can discover new perceptions we’ve never seen before. These experiences alter our understanding in deep ways. They shine new lights on who we are.

Shifting perspectives not only broadens our understanding of other cultures; it also allows us to peer deeper into nature, solving mysteries that science has pondered for hundreds of years. When I first sat down to write this book, I had no answers to the questions of quantum physics. I didn’t know what was missing from Newton’s laws of motion. I sensed that the theory of evolution was incomplete, but I didn’t know why. I had no explanation for the mind-body problem or the scientific enigma known as “emergence.” The five unsolved problems of physics seemed inscrutable.

I only knew from experience that, when I changed lenses, I found an added level of comprehension. I learned this after making a practice of switching points of view, as an experiment, to explore the nature of consciousness. This doesn’t mean that a new perspective, by itself, gives us better insight. No, it’s the contrast. Seeing from another angle adds context.

While writing this book, I soon realized that I’d underestimated the importance of this simple tool of changing points of view. It’s far more powerful than I realized.

It not only offers the key to seeing in the dark, you might say, and getting to know realms that are new and unknown to us, it also restores our sense of wholeness to life. It bridges the gap between science, philosophy, the arts, and the spiritual experience of being. This is what happens when we connect with nature at a deeper level.

However, explaining lenses of perception isn’t easy. It’s hard wrapping our brains around the impact they have on us. Reading about them isn’t enough to see how deeply they affect our connection with the world. If we want to understand—to truly understand—we need to experience changes in our way of seeing firsthand. That’s what this book attempts to do.

Successful writers know the importance of “showing” rather than “telling.” A good story pulls us into a world where the scene unfolds as if we were there. Telling gives us only a clinical, literal description; it doesn’t move us to a new perspective.

So, to explain lenses of perception properly, I’ll be using words poetically at times to evoke new views of the world, even when talking about science. This is how we can find what is hidden in plain sight.

But words can’t pull this off alone. The reader must do some heavy lifting. This book is more like a tour guide. We are, in a sense, going on a jungle safari to explore untamed points of view. Hopefully your mind will be boggled. That’s the point of this journey.

I’ll start with familiar views of the world. At first you can retain your normal way of seeing and thinking. Yet the quest soon takes us into dense underbrush where the most valuable treasures are hidden. If we want to unearth the gold, we must let go of the way we usually see reality.

That’s where we discover that lenses of perception are not just tools that help us understand the world, they’re fundamental to reality itself. We’ll see the scientific evidence that supports this.

To make such a leap requires a completely different mindset. It will probably feel unsettling at times when the ground starts shifting. New perspectives can shake us to our core. This is true for everyone. I experience the same thing.

If a section of this book leaves you feeling disturbed, even if in a subtle way, try setting it down for a while. Give the ideas a chance to percolate. Then go back and read the section again. You might be surprised. Remember, the goal here is to experience the uncomfortable feeling of confusion and then, breaking through that, to learn how we can change the way we see.

When writing this book, I didn’t expect to be pulled into questions about the laws of nature. I was simply trying to understand the problems of our modern times and see where the story led. Each chapter took me by surprise, as if the sails of my ship were being blown onto a new course by powerful winds. The thread of the story kept leading to deeper and deeper insights. I found myself farther from shore than expected, facing a whole new view of the world and the meaning of human understanding.

If you’re interested in a wild ride, buckle your seatbelt. Then join me on the path of discovery I took to find the dimension of life that scientists have been missing. We’ll use new tools to guide us: lenses of perception.

Click to download a longer excerpt