The Reproducibility Crisis of Psychology and What It Is Trying to Tell Us

By Doug Marman

Over the last few years, a raging crisis has hit the field of psychology: Most published studies can’t be replicated by others. For example, 100 experiments published by highly respected psychology journals were recently tested and only 36% produced results in agreement with the original reports.[1] This is called the “reproducibility crisis.”

It’s a complicated problem. It isn’t caused by fraud, except in rare cases. Many factors are involved, as explained by this article. For example, designing psychology experiments is more difficult than it sounds, and drawing conclusions often involves complex statistical analysis. Even the experiments aimed at reproducing experiments have been found wanting.[2]

This has created a rift among psychologists, with half saying that the problem is more about the way reproducibility tests are run, with the other half feeling “the academic ground give up beneath their feet.” This led one reporter to ask:

“Crisis or not, if we end up with a more rigorous approach to science, and more confidence in what it tells us, surely that is a good thing?”[3]

No, I don’t think that is the answer. In fact, I believe it will make the reproducibility problem worse. The rigorous approach of traditional science is part of the problem. It is time to put a spotlight on how objectivity can interfere with psychology experiments. Otherwise, we are going to continue casting doubt on valid scientific experiments.

Take, for example, an experiment that is literally a textbook case:[4] In the 1980s, Fritz Strack and his co-workers showed that when a person smiles, it improves their mood. Many well-known psychologists, such as William James, and scientists, such as Charles Darwin, have said that expressions create emotions. It makes sense. The challenge was how to design an experiment that scientifically verifies this.

You can’t just ask people to smile, because that automatically makes them conscious of what they’re doing. That will invalidate the results. Strack and his co-workers needed to find a way to get people to move their mouths into a smile, or a pout, without them knowing what they were doing. They found an ingenious solution.

When they asked people to hold a pen in their mouths, with their mouths closed, they automatically moved their faces into a sort of pout. When they asked another group to hold a pen between their teeth without closing their lips, they naturally formed a smile. The subjects had no idea what the test was really about. They were told that the experiment was studying people trying to do two things at the same time. They needed to hold the pen in their mouths while evaluating a series of Far Side cartoons.

Images from an experiment that tested the influence of smiling versus pouting.

The results showed that the group with smiles found the cartoons funnier than the group who was pouting. In other words, just putting your face into a smile naturally brightens your day.

The experiment has been verified countless times over the last twenty-five years, by many researchers. Some have expanded and tested the idea in new ways, besides smiles and pouts, and found similar results. For example, if you take a confident stance, in front of a group, you feel more confident.

So, Strack volunteered to have his classic study be tested by a team of researchers who wanted to reproduce psychology experiments. He wasn’t concerned. It had already been validated before.

Unfortunately, results from the replication experiment contradict Strack’s conclusion. The new test was run by seventeen scientists, across eight countries, using 2,000 subjects. They found no evidence that an unintentional smile or pout made any difference in the funniness of cartoons.[5]

How can this be?

Strack questions the conclusions and the set-up of the experiments. He voiced his concerns even before the testing began, after looking over their approach. At first, as I read Strack’s complaints, it felt like he was trying to defend his original work. But a number of things made me question my first impression.

First, Strack himself offered his experiment to be tested for replication and willingly supplied his original notes and evidence. Second, it had been confirmed successfully many times by other researchers. Third, he questioned the impact of the replication experimenters excluding the results of 600 subjects because they felt those subjects were holding the pens incorrectly or their answers were too wildly divergent. Did their selection to exclude certain results introduce a bias? Fourth, Strack pointed out that many of the subjects were psychology students. Since this was a textbook case, they could have recognized the experiment and its true purpose. That would have prevented them from acting naturally. They should never have been involved.

But it was the fifth point he made that jolted my attention. Strack said that he didn’t like the addition of cameras in the room watching the subjects because it could make the participants self-conscious. That jogged my memory. I had seen this scenario before.

It was one of the most famous early studies in psychology. In 1897, George Stratton strapped on a pair of lenses over his eyes that inverted and reversed his field of view.[6] He knew that our eyes have built-in lenses that produce the same effect: All of the images hitting our retinas are flipped upside-down and reversed. Stratton wanted to see if his mind would naturally find a way to invert and correct his vision.

Sure enough, after five days of looking through inverting lenses, he saw everything as right-side-up. After a week, his new vision felt completely normal.

The results were so startling that hundreds of follow-on experiments were run to reproduce the results. Many did, but some could not. For example, David Linden, a hundred years later, called Stratton’s theory of achieving upright vision a myth.[7] This has created an ongoing controversy.

I studied dozens of experiments with inverting lenses to find an explanation for what was going on. Why were the results so different? I finally found an answer in the longest study ever performed (40 days).[8] Ivan Kohler discovered, unexpectedly, that when he tried to examine the subjects every day with a battery of clinical tests, it prevented with their ability to adapt. They actually regressed.[9]

At first, Kohler thought lab tests would help show the progress his subjects were displaying. Just as Linden did, Kohler brought them in for examination on a daily basis. However, the tests made things worse. The subjects reverted back, losing the gains they had made. What’s going on, he wondered? Kohler had to alter his tests before figuring out the problem. As soon as the experiments were designed to resemble the everyday world, the problem disappeared:

“When the subject was asked to ‘aim’ at something, or to put up his hands in protection when danger threatened…he made correct responses. But when he was asked, ‘Please point this marker in the direction the light is coming from,’ errors occurred.”[10]

That’s when Kohler realized that the subjects were adapting instinctively to the real world. The moment they tried to think critically and objectively about what they were seeing, it broke their “perceptual set.” They reverted back to pre-experimental ways of seeing the world. Asking them to analyze what they were doing interfered with their ability to adapt.

This was hard to understand, Kohler wrote. It took weeks to solve the mystery. For example, after fourteen days of fencing practice, subjects with inverting lenses were able to respond to their opponent’s blade without errors. When it came to fencing, the correct reaction was all that mattered. But if he asked them the question, “Where do you see the rapier point?” it forced them to think critically about what they were experiencing, breaking their lens of perception. They immediately reverted back to old ways of seeing. His question interfered with their instinctive responses.

Getting the subjects to think objectively about what they were doing prevented them from adapting to upright vision. This was the mistake Linden had made. Even though Linden ran his experiment thirty years after Kohler, he didn’t realize the negative impact of objectivity. No wonder all his subjects failed to achieve upright vision.

This is the same affect that cameras can have on subjects. Strack was right: It would make them conscious of being recorded and seeing what they were doing objectively. It will probably make the whole experience far less natural. On top of this chilling effect of cameras, all of the instructions telling the subjects what to do were presented by a recorded video, in a closed room with no other people, making the experience even more sterile and impersonal.

Can this explain why the subjects showed no positive effects from their unintentional smiles? I think it does. Remember, Strack was trying to study an unconscious effect. He designed his experiments specifically to avoid any interference of conscious thought on the part of the subjects. If moving their mouths into the shape of a smile influences their mood, it is going to happen unconsciously. This means they need to feel at ease and natural, or it isn’t going to work. Thinking critically and objectively about what they were doing is going to interfere.

Think of the irony: From the desire to subject psychology experiments to rigorous, clinical objectivity, they prevented the very thing they were trying to study—natural responses. They intentionally used cameras and pre-recorded instructions to eliminate outside biases, and without knowing it they introduced a new bias that was just as powerful—objectivity.

Imagine what would happen to a loving relationship if you started analyzing your life partner or lover objectively. Do you think your relationship is going to get better or worse? Is it going to warm up or cool down your natural and playful back-and-forth exchanges?

Psychology research projects have noted the detrimental impact of objectivity on natural relationships. For example, in the last few decades, psychologists have looked closer at the way people learn new skills. John Flach, Professor of Psychology at Wright State University, offers an interesting illustration for how skill-based learning works: Look at the process a child goes through when first learning how to walk, then how to skate on ice, next how to do a handstand, and finally how to walk on stilts.

Each skill needs a “different type of coordination pattern,” a different way of acting to achieve control.[11] In other words, they each require a different lens of perception, a different way of seeing, to master these skills. They learn this unconsciously through trial and error.

Skill-based learning starts with actions. Trying something gives the child feedback, such as falling on their faces or flipping onto their backs. Then they try a new approach. With each loop of trial and error they gradually figure out how to balance and how to move. Learning at this stage is non-verbal and not mediated by thought: The child can’t explain how to balance on stilts. They don’t know how they learned to walk on their hands or skate on ice. They just did it.

This natural learning process is the best way to acquire new skills. No one teaches babies how to talk. They learn it themselves by making sounds and hearing the sounds they make. They learn how to use their bodies the same way: They form working relationships with their muscles and cells. They figure it out without thinking about it.

This is different from academic study, where we consciously think to understand new ideas and what they mean. Our natural process for learning new skills, on the other hand, is largely unconscious and critical thinking can interfere with this natural process.

Psychology experiments are not easy to design. The more rigorous and objective you make them, the more artificial they become, preventing the natural responses you are looking for. You end up learning less about how people act in the real world and more how they behave in a clinical lab.

This is why, as I said above, I believe more objectivity will make the reproducibility crisis worse, not better. What is needed is a better understanding of our lenses of perception, and where to use them. For example, objectivity, as a way of seeing, shouldn’t be the goal of science, but as a tool for double-checking and verifying our experiments. If we want our relationships with others and with our bodies to be natural and spontaneous, we need a relational lens instead, not objectivity.

Over the last century, psychologists have tried to become more rigorous and objective—to become more like physicists. At the same time physicists have come to realize that objectivity can’t explain the behavior of subatomic particles. This is the lesson they learned from quantum mechanics: How you set up an experiment alters the results, and there is nothing you can do to avoid this. In other words, there is no such thing as a fully objective perspective because all measurements influence the outcome.

This same principle applies to the study of natural human responses. It can’t be avoided. Objectivity and critical analysis can and will interfere. If we understand this better, I believe psychology experiments will become easier to reproduce.

I think Katie Palmer got it right when she said that the reproducibility crisis comes down to this:

“The field [of psychology] may have to think differently about how it thinks about itself.”

[1] Open Science Collaboration (over 260 co-authors), “Estimating the Reproducibility of Psychological Science,” Science, August 28, 2015: Vol. 349, Issue 6251.

[2] Daniel T. Gilbert, Gary King, Stephen Pettigrew, Timothy D. Wilson, Comment on ‘Estimating the Reproducibility of Psychological Science,’” Science, March 4, 2016: Vol. 351, Issue 6277.

[3] Ed Young, “Psychology’s Replication Crisis Can’t Be Wished Away,” The Atlantic, March 4, 2016.

[4] Fritz Strack, Leonard L. Martin, Sabine Stepper, “Inhibiting and Facilitating Conditions of the Human Smile: A Nonobtrusive Test of the Facial Feedback Hypothesis,” Journal of Personality and Social Psychology, Vol 54(5), May 1988, 768-777.

[5] Daniel Engber, “Sad Face,” Slate magazine,  August 28, 2016.

[6] George M. Stratton, “Vision without Inversion of the Retinal Image,” Psychological Review 4, no. 4 (1897), p. 341-360.

[7] David E. J. Linden, Ulrich Kallenbach, Armin Heinecke, Wolf Singer, Rainer Goebel, “The Myth of Upright Vision,” Perception 28, no. 4 (1999), p. 469-481. Also posted at

[8] Ivo Kohler, The Formation and Transformation of the Perceptual World, tr. Harry Fiss (New York: International Universities Press, 1964).

[9] Doug Marman, “Lenses of Perception: A Surprising New Look at the Origin of Life, the Laws of Nature, and Our Universe,” (Ridgefield, Washington, Lenses of Perception Press, 2016.), p. 88-90.

[10] Ivo Kohler, The Formation and Transformation of the Perceptual World, p. 153-155.

[11] John M. Flach and Fred Voorhorst, “What Matters?: Putting Common Sense to Work,” (Dayton, Ohio, Wright State University Libraries, 2016), p. 104-105.

From the Blog of Marcha Fox

“Lenses of Perception” by Doug Marman: An Interesting Summer Read for Science Aficionados

Let me start out by saying that this book has 359 references that comprise eleven pages of endnotes. If you’re not impressed by that, then this is probably not the book for you. However, if you love science and appreciate revolutionary ideas supported by considerable research that relate to an enigma no one, including Einstein, Feynman or Hawking, has been able to solve, then you would probably enjoy this book.

As a physicist and science fiction writer myself, I was fascinated by the book’s precepts. When I really get into such a tome, I become a librarian’s worst nightmare: highlighting key passages, scribbling notes in the margin and, heaven forbid, dog-earing pages. For what it’s worth, my copy sports 46 pages in that condition as well as more marginal notes and highlights than I care to count.

The premise of this fascinating book has been touched on ever since the double-slit experiment suggested some mysterious interaction existed between consciousness and physical matter. Rather than argue this, the author makes an a priori assumption that such a relationship exists. That in and of itself is not particularly remarkable, since it has been the stance of various other authors for decades. Marman, however, does not stop there. It’s not simply a matter of human consciousness influencing subatomic particles. He systematically builds a credible case for the tiniest subatomic particles possessing consciousness as well.

The author is an engineer and inventor who holds various patents and is thus experienced on the technical side, but is not a PhD physicist. This is a good thing. Stepping beyond the bounds of conventional science tends to be a career-limiting experience. Some have referred to scientific progression as occurring only via funerals, e.g., German physicist, Max Planck, who stated, “A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it.”

Marman’s theory is imaginative to the point of resembling one of Einstein’s thought experiments. While he doesn’t do the math, it goes beyond philosophizing, conjecture or excursions of fantasy. As indicated in the first sentence of this review, this book is well documented. The author states his theory then backs it up with existing scientific research.

[To read the rest of March’s blog post, go HERE.]

The Vital Question — Part I

By Doug Marman

Nick Lane recently published a new book, The Vital Question: Energy, Evolution, and the Origins of Complex Life. It isn’t an easy book to read, but it is packed with the latest research about the evolution of early life, and it offers a number of provocative new theories.

The Vital Question by Nick Lane.

The Vital Question by Nick Lane.

Everything in Lane’s book fits perfectly with the theory of how life began that I presented in Lenses of Perception. However, Lenses fills in some important gaps in Lane’s story. That’s what I’ll be reviewing in this post.

Lane explains why we need to start looking at living organisms in a different way. The question we should be asking ourselves, he says, is not what is life, but how do creatures live? How do they extract energy from the world to keep them going? It’s an interesting perspective.

Lane then describes the process that all living things use to control energy. He even has a good story about where such a process probably began. But he can’t explain how living things gained the ability to intelligently control energy in the first place. This is where current science hits a wall. Fortunately, the Lenses of Perception theory shows a way to understand this missing key of life.

Lane’s book is filled with valuable insights. For example, out of date origin-of-life stories don’t work. The idea that lightning hitting the “primordial soup” (in the oceans) was able to create larger, more complex molecules, is a dead end. There is no way these molecules just arranged themselves into the right pattern and leaped the hurdle to life. Lane says the whole conjecture is misguided and should be forgotten.

The problem isn’t making complex molecules, he says. It is how to extract the energy needed to survive. Lightning can’t create the spark of life, because organisms need a continuous source of controllable energy to live. Lane believes the whole idea of the primordial soup is a big mistake that has led countless researchers in the wrong direction.

Lane then dives deep into describing how all life forms on Earth use energy:

“Essentially all living cells power themselves through the flow of protons… The energy we gain from burning food in respiration is used to pump protons across a membrane, forming a reservoir on one side of the membrane. The flow of protons back from this reservoir can be used to power work in the same way as a turbine in a hydroelectric dam… At the level of proteins, we now know how proton power works in detail. We also know that the use of proton gradients is universal across life on earth—proton power is as much an integral part of all life as the universal genetic code. Yet we know next to nothing about how or why this counterintuitive mechanism of energy harnessing first evolved.”[1]

In other words, even the simplest forms of life have a way of moving protons, one at a time, across a membrane, where they are stored like money in a bank. Later, they spend their proton loot to power everything they need to do, in order to survive. It’s an amazing discovery, but how exactly does the cell intelligently control this process? And how did the first life form learn this trick? Biologists don’t know.

That’s where the Lenses of Perception theory comes in. It proposes that the “all-for-one” bond is the secret of life we are looking for. This bond compels molecules of a cell to work in a coordinated way together for the cell’s survival. Outside forces can’t pull this off. The forces known to physics can’t make inorganic matter alive. Chemists and physicists haven’t found the right lens to see how this happens. But an understanding of relationships can explain it.

The process must start within the cell. The molecules must act in just the right way, to allow the cell to live. Why do they do this? According to Lenses of Perception, a special form of entanglement makes this possible.

The molecules in a cell are not only entangled with each other, forming a cohesive group, but they are also entangled with the cell itself. As a result, the molecules act as a team that is aligned to the cell.

This is admittedly a controversial theory, because most physicists believe that the unpredictable nature of quantum particles is, first of all, completely random, and second, it only happens at the subatomic level. Neither of these are true, however, since we see the same unpredictable behavior at the level of living cells, as well as at the level of complex organisms such as animals.

Lenses of Perception shows that the relationships between living creatures display all the same puzzles and paradoxes of quantum mechanics. This isn’t a coincidence. Fundamental particles are unpredictable because they, too, are conscious. This turns out to be a useful explanation because the spontaneous actions of quanta can’t be explained by outer forces.

If particles are conscious, then they should form relationships. This ends up being the true cause of attraction and repulsion between particles that creates the forces of physics. This might sound preposterous, but it’s completely consistent with quantum theory. (See Lenses of Perception for a detailed discussion.)

One type of relationship that forms naturally when beings come together is for them to work as a group. They form unified teams if they have good leaders. This bond, I believe, is the key to unlocking the secret of life. Once we realize the universal nature of what I call the “all-for-one bond,” we gain a new lens that shows us life in a completely different light.

For example, at the subatomic level, we see quarks coming together to form protons and neutrons. The units they form are so tightly bound together that they act as singular entities. They don’t spin like a group of quarks—they spin as one.

Protons and neutrons also bond together in the same way to form atoms. And this shows us one of the amazing results of this bond: It creates hierarchies. Not only do quarks combine to form protons, and protons combine to form atoms, but atoms also bind together to create stars, and stars form galaxies.

You might think that stars spin in galaxies only because of the force of gravity, but this is wrong. Scientists say that dark matter is needed to explain a strange problem: Why do the outer stars in galaxies spin as one? Gravity, alone, can’t explain this. The outer stars should spin slower, if only gravity is involved.

Unfortunately, physicists have no idea what dark matter is. And they don’t know why the outer sheath of the sun spins faster than it should, as well. Plus, a similar situation exists at the level of protons and atoms, called the “mass gap problem.” All of these problems are resolved, once we see the role of all-for-one bonds. (While I’m trying my best to make this understandable to newcomers, I can’t possibly cover all of the background in Lenses of Perception, so this is understandably a very quick summary.)

All-for-one bonds always create hierarchies because the group is held together by following a higher level leader. This is exactly why cells work together to allow complex organisms to live, and are even willing to sacrifice their lives for the sake of the creature. We see the same thing on a human level, when parents make sacrifices for their family, and when people come together to work for a company or a cause larger than themselves.

If this theory is right, then it paints a new picture of how cells first formed. In fact, the LoP theory is quite specific about how this must have happened. It had to start with a group that formed behind a leader who was one of their own. In other words, one molecule stepped forward to lead, but this role was temporary.

Any leader that steps forward from a group can be replaced. Actually, the members of the group can be replaced as well. This is exactly what we see in companies. They might get started with an entrepreneur, but other leaders take over as they expand, and employees come and go.

This first step is called a weak all-for-one bond, according to Lenses of Perception. The group isn’t held together as tightly as a cell, an atom, or an organism. In fact, weak all-for-one bonds can easily split into separate groups that go off in different directions. This is exactly what we see with companies. It also shows that reproduction probably existed before the first true cells emerged.

But weak all-for-one bonds have one big advantage over strong all-for-one bonds: They can survive indefinitely, as long as individuals continue stepping in to keep them going. That’s not true with organisms. When an animal dies, the cells that form its body all fall apart and decompose. This shows how closely their lives are entangled.

So, the first stage in the emergence of life is a loosely formed group that follows a temporary leader. A major evolutionary leap was needed to transform this group into a cell with a will of its own, creating a strong all-for-one bond. But I’m not going to discuss that stage in this post. I’ll address it in Part II.

Back to the pre-cellular stage. It probably survived for a long time, replacing leaders and members, before making the leap to becoming a unified conscious cell. In other words, it started as a community of molecules, and it must have taken a long time to evolve the ability to keep the group going. How did this happen? you might ask.

Hydrothermal vents deep under the ocean, near the Marianas Trench. Photo by the US National Oceanic and Atmospheric Administration.

Hydrothermal vents deep under the ocean, near the Marianas Trench. Photo by the US National Oceanic and Atmospheric Administration.

Let’s turn back to Nick Lane. He tells an interesting story. Deep in the oceans on Earth are alkaline hydrothermal vents that offered exactly the right conditions for this process to begin. The vents are porous, with millions of tiny openings, making a perfect gathering place for molecules to settle and combine. The vents also supply a continuous flow of charged ions, while the rest of the ocean was much more acidic in those early days.

This allowed molecules to gather in the porous openings, creating something similar to membranes. And the vents supplied a natural source of protons, in the form of hydrogen ions, making a reservoir on one side. This created an electrical potential compared to the acidic ocean on the other side of the membrane. Therefore, there was a steady flow of energy that lasted for hundreds of millions of years. This is how long it took for a community of molecules to develop the ability to survive as a group.

This picture that Lane paints is consistent with the origin of life story in Lenses of Perception. It does seem like a realistic place for life to emerge. However, I don’t see how molecules could have evolved the ability to act as a group for its own self-preservation without the all-for-one bond. It can’t be created by external forces. That’s impossible. How could outside forces give creatures a will of their own? It must, by definition, come from within. This means that molecules must have first learned to keep the group going. Then the leap to cellular life was possible.

If consciousness exists first, and all particles possess it, then groups should naturally form, and the way they relate to each other should develop. In other words, they will gradually begin working as groups. That’s where molecules come from. But their abilities are very limited.

However, when molecules work together, they have far more flexibility (degrees of freedom). With a continuous source of energy and hundreds of millions of years, they could have learned how to work to preserve the life of the group, to keep the community alive. This makes sense if particles and molecules have some element of consciousness. And alkaline hydrothermal vents offer exactly the right environment, as Lane says.

The gaps in Lane’s story are where the Lenses of Perception theory shines. For example, he admits that he can’t explain how the first cells formed, or why molecules joined together to form genes:

“I was evasive on details such as how the genetic code arose, but focused on the conceptual argument that these conditions could theoretically have produced rudimentary cells with genes and proteins.”[2]

Unfortunately, when he tries to explain how this happened, he makes a common mistake. He says:

“Populations of cells were subject to perfectly normal natural selection.”[3]

Natural selection isn’t some kind of magic wand that we should wave to explain the things we don’t understand. Unfortunately, biologists do it all this time.

This doesn’t mean that natural selection isn’t real, but that we shouldn’t use it to paint over the things that we don’t know. Doing so stops us from looking for real explanations.

In this case, it is a serious mistake because natural selection doesn’t work with molecules. Chemical reactions, by themselves, can and do adapt to their surroundings, but they can’t evolve the ability to work together for the purpose of helping their group survive. It’s only wishful thinking to imagine that natural selection could magically pull this off. Something is clearly missing.

How did the first molecules gain the ability to work together as groups? Until we can answer this, we have no idea how genes first formed. Yes, we can see that genes play an important role in life, but what holds them together? How do they act at exactly the right times in synchrony with all the other genes to allow organisms to find food, excrete wastes, and reproduce?

Everything starts to make sense if consciousness is involved from the start. Then molecules will form relationships and groups. Over a billion years, it is possible for more complex combinations to form that allow individual molecules to work as a team, creating something that is larger than any of them individually. Once they experience the benefits, they will want to preserve the group by acting in a unified way.

Here’s another example of a big gap. In Chapter 3 of his book, Lane asks the question, why are proton gradients the source of power for all living things on this planet. Why not thermal or mechanical energy? Why not electrical discharges or ultraviolet radiation?

This deep sea hydrothermal vent is encrusted with tiny crabs and surrounded by life, which is a good sign that this is where life may have begun on planet Earth.

This deep sea hydrothermal vent is encrusted with tiny crabs and surrounded by life, which is a good sign that this is where life may have begun on planet Earth. Photo from Wikipedia by A. D. Rogers et al.

He goes on to suggest that the reason for this is that life began in these alkaline hydrothermal vents in the ocean. But this misses the real answer.

Thermal and mechanical energy, electrical discharges, and ultraviolet radiation, will never work because these are all classical forces based on cause and effect. Those forces only work at the level of masses of particles, not individuals.

We need a quantum process. We need to understand how forces themselves emerge from quantum fields and quantum interactions. That’s where the secret of life can be explained.

Mechanical and electrical forces all play roles in the lives of cells, but they will never explain how organisms act under their own volition or how they act to preserve their own lives. We need consciousness to begin with. Consciousness isn’t a byproduct, it is a necessary cause.

This becomes clear when we look at exactly how living things use proton gradients to power their lifestyles. Lane compares the flow of protons through the molecular structures in cells to shielded wires carrying flows of electricity. But this is wrong. A wire is one long conductor, with atoms lined up end-to-end. Electricity does indeed flow through copper like water through a pipe. Just add a voltage potential, such as a battery, and the current will flow.

This is not even close to what happens in cells. Lane shows this quite clearly. Proton gradients are constructed from 45 proteins, with each protein being made of hundreds of amino acids. This complex structure is needed for cells to move protons across a membrane and then use those protons to create the chemical energy needed to survive.

The protons are moved from one end of this chain to the other. Protons are moved one at a time through the structure, across a series of these landing spots. Each step is a carefully controlled distance from the next, because electrons must make quantum leaps to get from one to the next. In other words, protons are not moved like water or electricity. They’re moved one at a time through the structure with a quantum process guiding them.

A better analogy to what is happening here would be workers in a town, where farmers grow food, food preparers convert the food into usable forms, and movers bring the food to stores and restaurants where consumers can buy them. These consumers are the very same workers, food preparers, and movers. We have a functioning community.

We can’t just connect a battery to a circuit and make a town work. Food doesn’t flow through a pipe. It is passed along from one person to the next. It isn’t forced through the pipe by an external force. Yes, there is an exchange of money each step of the way, but it is the hunger of people that drives the process.

Money is not the cause. Cash flows through a town because there’s a need for food and other goods. In a cell, protons are the goods needed. Electrons are the money.

As electrons jump from one landing pad to the next, protons are handed off and routed to where they are needed.

This is a community effort. Everyone must work together to pull this off. In other words, all of the individual molecules must be aligned to a purpose, guided by common goals, and led by leaders to keep everything coordinated. These are relationships that make this work. Individuals helping each other and the group.

It seems hard to believe that molecules could act intelligently. I admit it. We’ve learned to look at matter as lifeless for so long that it is hard to buy this. But, as difficult as this is to picture, it does explain everything from the origin of particles to the origin of life. And after you get used to the idea, it makes sense.

There are no other solutions to the origin of life without huge gaps. Unless you want to believe that natural selection magically solved the problem, or that electrical currents somehow drive protons exactly to where and when they are needed for cells to survive.

In Part II, of this two-part series, we’ll explore a leap in evolution that is just as amazing as the origin of cellular life. This is the jump that cells took when they changed from being single cells to multicellular creatures such as plants, fungi, animals, and insects. In other words, all of complex life depends on this event when cells changed.

[1] Nick Lane, The Vital Question: Energy, Evolution, and the Origins of Complex Life (New York City, W. W. Norton & Company, 2015), p. 13.

[2] Nick Lane, The Vital Question, p. 149.

[3] Ibid.

This is Your Brain on Religion — This is Your Brain on Science

By Doug Marman

The main premise of the Lenses of Perception theory is that there are fundamental lenses—ways of seeing—and we can only perceive through one lens at a time. A recent series of experiments validates this idea.

Researchers from Case Western University and Babson College published a study three weeks ago titled, Why Do You Believe in God? Relationships between Religious Belief, Analytic Thinking, Mentalizing and Moral Concern.

Their test results show that when people think of religious matters, their brains suppress critical thinking. And when they focus on scientific topics, their brain suppresses religious thoughts.

“It suggests religious beliefs and scientific thinking clash because different brain areas are involved in both cognitive processes.”[1]

Thinking about science and thinking about religion requires two different brain networks, and both networks suppress the other. ("Say your prayer" photo by Joachim Bär. Eucaryote cell illustration from Wikipedia.)

Thinking about science and thinking about religion require two different brain networks, and both networks suppress the other. (“Say your prayer” photo by Joachim Bär. Eucaryote cell illustration from Wikipedia.)

In other words, the experiments showed clearly that working with science involves one brain network, while religion works with a completely different network. And the two networks interfere with the other, making it hard to use both at the same time.

The fact that these brain networks clash with each other is one reason we see conflicts between religious belief and science. However, lenses of perception theory suggests that this isn’t the underlying cause.

Our brains evolved these two networks for a reason: The world is governed by different ways of seeing. This isn’t just about the lenses that human beings use. It reaches all the way down to the level of subatomic particles.

Everything works this way because the world isn’t created by outer forces. It comes into existence through conscious experiences, at every level. That’s why perception plays such an important role.

For example, the scientific perspective uses a third-person lens. That’s the lens we use when looking at the world as if we’re outside observers. This turns out to be the best approach for studying mechanical reactions because particles go along with the outsider perspective. This is why, when trying to analyze a cause-and-effect process, third-person lenses give us the clearest picture of what’s happening.

But the world isn’t just mechanical. Relationships also hold groups together and connect beings to each other. These ties emerge from second-person experiences, created by common interests shared with others.

Second-person perceptions are the basis of all relationships. However, they come in two distinct forms.

First, there is a sense of empathy that allows us to relate one-on-one with another person or animal. We experience this with friends and our pets when we connect with them.

When someone we care about is in pain, we actually feel it. At the subatomic level this is known as entanglement. If two particles become entangled, they literally form an invisible alignment that reaches across time and space. This is one of the many mind-boggling features of quantum physics that make sense when we see them as relationships.

The second type of second-person perception gives us our moralistic sense of the right thing to do. Moral concerns emerge from connections to groups such as communities we belong to, companies we work for, or even our feeling for the human race or the whole of life. Working together with others shows us that we can create something greater as part of a group.

This is where our sense of responsibility comes from. We want to contribute. We want our lives to mean something. I call this the “all-for-one bond,” because it’s a special relationship that team members have with each other when working toward a singular goal.

At the level of fundamental particles, the same force holds atoms together. And in biology, cells bind to the organisms they belong to for the same reason.

So, our brain evolved ways of seeing these patterns of behavior because the world is shaped by these relationships.

The research paper, above, ran tests to see the difference between empathy and moral concern. They wanted to determine how each of these two types of relationship relate to religious belief. Surprisingly, they found that only the moralistic sense showed a strong connection. Empathy played hardly any role at all in the religious experience.

This is exactly what the lenses of perception theory predicts. Religion comes from our sense that there is a higher purpose to life and that a life with meaning comes from working with others for something beyond ourselves. This doesn’t belong to religion alone. Scientists also feel the sense of purpose that comes from working with others for the advancement of science.

This raises another interesting point reported by the above paper: There is no reason why we can’t move back and forth between religion and science, between our moral sense and an analytic perspective. We simply need to learn that they engage two different ways of seeing. Two different brain networks are involved. This means that we need to change lenses when shifting from one to the other.

“The study also points out that some of the great scientists of our times were also very spiritual men. ‘Far from always conflicting with science, under the right circumstances religious belief may positively promote scientific creativity and insight,’ says Tony Jack, lead author of the study. ‘Many of history’s most famous scientists were spiritual or religious. Those noted individuals were intellectually sophisticated enough to see that there is no need for religion and science to come into conflict.’”[2]



The Unfinished Revolution of Quantum Mechanics

By Doug Marman

Quantum mechanics has proven itself to be the most accurate scientific theory ever known. Plus, some 30% of the US gross national product is based on quantum mechanical inventions. They’re used in everything from computer chips and lasers to CD players and magnetic resonance imaging machines in hospitals.

However, the theory has yet to make its way into the understanding of the general public. As a result, the scientific revolution of quantum mechanics is unfinished.

Prague Astronomical Clock. Photo by Vera Kratochivil

Prague Astronomical Clock. Photo by Vera Kratochivil

Yes, we’ve all heard the term ‘quantum.’ But few understand the science and what it means, even in a simplified way. Scientists aren’t any better off. They know how to use the equations, but they don’t understand what it means either.

Since the modern age of science began, this has never happened before.

Isaac Newton published his book that explained gravity and the laws of motion in 1687. People struggled with the idea at first, that a force could reach across space from the sun and pull the Earth. However, after a couple generations, the idea was accepted by almost everyone. People could picture the universe as a giant clockwork, driven by cause and effect.

Michael Faraday and James Clerk Maxwell launched the electromagnetic revolution in the mid 1800’s. Within fifty years, electrical inventions were springing up everywhere. The term “force field” became widely used and most people intuitively understood what it meant.

Einstein’s principle of relativity also created problems at first. How can the speed of light look the same when speeding toward a beam of light or away from it? How can the measurement of time be relative to our reference frame?

It’s still a challenge for most people to fathom why the world is this way. However, the underlying principle is simple enough: Everyone’s experience is relative. There is no perspective that is truer than any other.

It takes time for major breakthroughs to filter into the understanding of the public. When they do, they literally change the way we perceive the world. In other words, they give us a new lens—a new way of seeing.

But now, for the first time in history, a revolutionary scientific discovery has failed to reach a general understanding. A hundred years after quantum theory was discovered, it still doesn’t make sense, not even to physicists.

This creates a problem. An intuitive understanding isn’t a part of our social wisdom, but something else has filled the void. It happened unintentionally. The void has been filled with a conclusion that many scientists have reached: Life doesn’t make sense. There is no meaning to quantum uncertainty; that’s just the way it is.

This idea is creating a wedge between science and other fields, such as philosophy and religion, because many people don’t accept it. Einstein hit the nail on the head when he said, “God doesn’t play dice with the universe.” In other words, the world isn’t just a bunch of random pointless events. It means something.

Einstein, in a letter to Max Born, 4 December 1926. Often quoted as "God does not play dice with the universe."

Einstein, in a letter to Max Born, 4 December 1926. Often quoted as “God does not play dice with the universe.”

As a result, there’s been a change in the public’s perception of science. Scientists have noticed the shift in attitude. Some believe that this is a sign that our society is sliding backwards towards superstitious thinking, but I don’t think that’s the case. Most of those claiming that something is missing from science are highly educated.

I think a big underlying cause of this growing rift is that we don’t yet understand one of the biggest breakthroughs in science. A deeper understanding of quantum mechanics can heal this problem.

It’s important to realize that this idea—that life is just ‘probabilistic’ and ‘unpredictable’ at the level of fundamental particles, and the best we can do is accept it—is a false conclusion. Physicists haven’t learned this scientifically. They simply don’t know how else to interpret the data.

In other words, this isn’t a lesson of quantum mechanics. It’s simply a sign that physicists don’t know what it means. It isn’t a conclusion. It’s a reminder that the quantum revolution is incomplete.

I say this because it is now clear to me, after I found a way to explain the quantum mystery. I didn’t expect to uncover a simple intuitive explanation. It was an accident. But looking back, it’s now easy to see the huge void, like a dark cloud, that has kept the real lesson of quantum mechanics from our doorstep.

Quantum theory now makes sense to me, and I think that it is simple enough that most people can understand. More importantly, the underlying principles don’t just apply to the subatomic world. They play a vital role in our everyday lives. That was the biggest surprise for me.

My wife, Karen, was my first litmus test. She never studied physics in college. She doesn’t read science books. She didn’t know anything about quantum mechanics. But after reading chapter 13, “The Spooky World of Quantum Physics” in my book, Lenses of Perception, she shocked me and said, “That was fun.” She actually enjoyed reading it.

She even asked me to get her a T-shirt that says, “I sorta understand quantum mechanics.”

Of course, she realized that a lot of the science was over her head. She could see that, but it still intuitively made sense to her.

This might seem like a small thing, but it is something that leading physicists say is impossible: They claim that no one understands it.

More importantly, Karen began seeing the principles everywhere. The world now makes more sense and is easier to understand.

For example, we experience unpredictable effects in our lives everyday, because we never know for sure how others, or even how we, will act in a situation we’ve never faced before. These are true quantum effects. They are an important part of life, because they show us that life isn’t completely driven by outside forces. It also emerges from within.

Karen’s reaction isn’t unique. Another person recently wrote to tell me that he was watching a show on the history channel about Thomas Jefferson, when he suddenly realized it was a perfect example of the scientific lens influencing Jefferson’s perceptions.

Another person told me that she was reading a book on spirituality that she had read many times before, but now she understands it more deeply because she can see how lenses of perception are involved.

Finding a deeper understanding of life—that is the part of the quantum revolution that we’ve been missing.

We’ve been told that quantum shenanigans only exist in the subatomic world. If this were true, then most people could easily ignore it, since it has little to do with their daily lives. However, it turns out that quantum theory is more important to people’s personal lives than any of the other great scientific discoveries.

Why? Because once we see how to understand it, it clarifies so much of what makes life mysterious. This doesn’t mean it ends the mystery in the way that objective analysis often does. On the contrary, it heightens the enigma and pulls us in.

"Single Water Drop" by Petr Kratochivil

“Single Water Drop” by Petr Kratochivil

Here’s an example: We connect with other people through our work, communities, friendships and families. Relationships expand the horizons of our individual lives. These bonds change us and give meaning to our existence. But none of this can be understood with a third-person lens, because it exists between people. It can’t be seen by outside observers. We have to experience it.

This is exactly what it means to be entangled. And this is exactly what quantum entanglement—perhaps the greatest mystery of quantum mechanics—is about. Relationships are real, but they only exist in between. They don’t belong to one person or another, they’re a connection between them.

When two particles become entangled, they are tied together in an invisible way. When something affects one, it affects the other as well. We experience the same thing. When a friend suffers or has a success, it affects us as well.

This isn’t just a similarity. These are examples of true quantum entanglement.

Once we find the right lens, we can see that our lives are woven into the universe.

Think of how this understanding would change your perception of science if this was a recognized lesson of quantum mechanics. Doesn’t it build a bridge between science and philosophy and religion?

It’s been more than a century since the revolution started. I’d say it is high time for quantum behavior to finally make sense, and for our culture to absorb the meaning of this great breakthrough.