What Psychologists & Quantum Physicists Can Learn From Each Other

By Doug Marman

I gave a talk at York University in Toronto titled, What Psychologists and Quantum Physicists Can Learn From Each Other.

You can see a video recording of the talk further down below in this article. If you are interested in a closer look at the slides, you can download the PowerPoint presentation by clicking on the image below:
The talk refers to insights gained from my recent paper, The Lenses of Perception Interpretation of Quantum Mechanics, that was recently published in a peer reviewed journal. I show how those new insights at the quantum level offer some interesting new perspectives on psychology.

The talk is intended to be provocative. It is highly speculative, but it also raises some interesting questions.

A number of the founders of quantum mechanics, such as Niels Bohr, Erwin Schrödinger, and Werner Heisenberg, saw a surprising number of remarkable resemblances between living organisms and quantum behavior. They each wrote and gave lectures on this subject, although they fell short of offering a good explanation for why these similarities exist.

In my talk, I offer an explanation that arose from my interpretation of quantum mechanics. This talk briefly discusses some of the implications for psychology.

You can watch the talk below. There were also a number of interesting questions after the talk was over that I have transcribed and added below, if you are interested.

Questions and Answer:

After the presentation, there were questions from 6-8 different scientists and a few students. It was a lively discussion that seemed to keep everyone glued to their seats. No one left, even though we went way past the one-hour time slot, and school classes were done just before a long holiday weekend. The questions were good ones and show how challenging it is to get our heads around the ideas proposed in this presentation. I would like to thank everyone for their questions and comments, since this is always the most fun part of a presentation.

Q:  Thank you for showing the juxtaposition of quantum properties with the properties of organisms. One phenomenon that is just as strange as superposition is the exclusion principle. In the quantum field, with two particles of a particular class of fermions, you cannot force them to be in the same state. Once you try to put them in the same state, they literally repel each other. I don’t think among living things that I observe anything like this. You cannot put two people in the same state or the opposite situation for bosons.

A:  Yes, and as you say there is an interesting aspect to this because while fermions act this way, as you say, bosons have no problem being in the same state. If you look at fundamental particles, such as a photon, which is a boson, its relationship is different. A photon is not tied to a photon field the way an electron is tied to an electron field. A photon exists to carry the electromagnetic force from an emitter to an absorber. And when a photon travels from an emitter to an absorber it is traveling at the speed of light. This means that according to the photon’s experience no time passes between emission and absorption. It is as if the moment it is emitted and the moment it is absorbed is the same moment.

That relationship is very different compared to a particle like an electron. An electron is a matter particle with its relationship tied to the electron field. The photon, on the other hand, is carrying a force from an emitter to an absorber. I have written about this in my book, and I show that this explains why a photon has no mass because a photon is not directly tied to specific place in space. Instead, it is tied to this relationship between the emitter and the absorber. That is its role and what is causing it to move from here to there because it is carrying something.

Whereas a particle like an electron, it has a place in space that it occupies. That is why, when you have matter-like particles, they cannot occupy the same place in space. This is the same with human beings, we cannot occupy the same place. If people get packed too close together, there is a push-back just like we see with electrons.

Photons and other bosons are different. They don’t relate to the way that human beings act because bosons have a different role.

Q:  So, you are saying that there is no counterpart in organisms with bosons?

A:  Yes, that’s right.

Q:  I see.

Further answer:  Although I ended my answer above this way, it is interesting to point out that people can, at times, take on the role of being a messenger, where we carry a message from one person to another. This is where the saying comes from, “Don’t shoot the messenger.” In other words, there is no need to push back on someone who is acting as a messenger because the message is not coming from them. They only deliver it.

When mail is delivered to our mailbox or our home, we accept what the delivery person gives us, whether it is good news or bad news, whether it is a friendly card or a bill we need to pay, because the messages are for us and they are not coming from the person who delivers the mail. Messengers only carry messages from senders to receivers. In a sense, messengers are go-betweens, which is exactly the way bosons act as well. Thus, the role of a messenger is the same as the role of photons who carry energy and momentum from an emitter to an absorber. In other words, the roles of both messengers and bosons only exist to relay information. This is why they share the same state shared between the sender and receiver of the message they are carrying.

However, as I said above, all organisms inhabit places in space and this means that they all act like fermions and matter-type particles such as electrons.

I should also add here that the exclusion principle being asked about here is called the Pauli exclusion principle, after Wolfgang Pauli who discovered it. It was originally discovered in relation to electrons in the orbitals of atoms. Pauli discovered that electrons can only share an orbital if they possess unique quantum states in relation to each other. For example, they can have opposite spins, or their magnetic moments can be at right angles to each other. This exclusion principle is what limits how many electrons can exist in the same shell of an atom, and this is what causes most of the chemical properties of atoms.

Do we see this behavior with organisms? Yes, we do, but we don’t think of it as exclusion. It shows up in any group of organisms where they are jointly working together for a common purpose, such as the cells in the bodies of a multicellular organism. What is quite remarkable is to see how an egg cell develops after it is fertilized. Shortly after it starts to divide, making clone cells that are virtually identical, a change takes place. Each of the cells starts to specialize in its roll. No two cells play exactly the same role. This ends up being the driving force behind the development of organs, where the cells further specialize even though they are still clones of each other.

What causes this drive for specialization that makes multicellular organisms possible? There is a lot of speculation. Significant research has gone into trying to show that this is somehow driven by information in the genes, but there is growing evidence that specialization is more a product of epi-genetics, which means that it emerges for some reason that isn’t quite clear at the level of the group activity. In other words, the drive for specialization shows up when the cells join together for a common purpose of developing a body.

We see the same behavior in human society. When we form companies, people see the benefits in specializing their work. It is better for the company, and each employee feels better when they know that they have developed a special skill that is needed. We can also see this with children when they are growing up. After they reach the age of 6 or 7, they start to differentiate themselves from each other, often avoiding things that their siblings like to do or are better at. The drive to specialize is also a drive to be unique in how we contribute.

I have shown in my book that this specialization in organisms is surprisingly similar to the exclusion principle in atoms, protons, and neutrons, where the strong force is active. This is a long story, so I will not include it here. However, I will say that the similarity is surprisingly strong.

 

Q:  The middle part of your presentation was all about the similarities between how quanta behave and how organisms behave. I think we were all waiting, because we thought you were preparing us for another part where you explain the mechanics between the two systems. But your solution was to say that if we observe the similarities in order to turn it into a law, we have to show that all phenomenon that we observe on one side we have to also observe on the other side. I think it is not enough, or it is at least not on the same level as trying to come up with a model for how the mechanics on one side can translate into microscopic behavior. And the way we understand quantum mechanics today, or at least the way I understand it, predicts something different. It predicts that because of the law of big numbers and the statistics behind it that macroscopic systems are much more predictable than microscopic systems are. And, of course, we can say that we don’t observe that in psychology or sociology or human behavior, but the way we understand the mechanics of quantum mechanics does not predict what you are suggesting here.

A:  The reason that I did not include what you are talking about is because this is a one-hour presentation and there is a lot to get into this issue that you are raising. But I discuss this in my paper. I will give you an example. The question you are asking is why do particles at the quantum level have such strange behavior, but at the macroscopic level we don’t see that. At the macroscopic level things behave more like the old physics where everything happens according to cause and effect. Why does this transition from the microscopic to the macroscopic take place? There is nothing in quantum theory that satisfactorily explains why this happens.

There are different interpretations that try to explain it, such as decoherence theory, that talks about it. But even in decoherence theory, as I show in my paper, there are problems with the theory. For example, decoherence theory assumes that particles are distinct from each other to begin with. Otherwise they could not become entangled with each other. But the theory then suggests that the differences between objects that makes them distinct from each other emerges through a process of entanglement. Now, you can’t assume a distinction between particles at the beginning and then suggest that distinctions between objects emerge at the end. There are contradictions in the theory. On the other hand, I explain in my paper how this approach that I have presented today leads to a solution that solves that problem. And it relates to organisms.

Here is an example: When you have a group, a force emerges that we call peer pressure. When you are part of a group, there is always some peer pressure. The larger the group, the more peer pressure we feel. This pressure holds groups together. Going against the norm requires more effort.

Q:  You are on the analogy level again.

A:  Okay, what I show first of all in my paper is a series of principles, right down to the basics, about what makes all of this work. And then I show a model, a functional model for how this applies at the quantum physics level, and how this also applies at the level of organisms. What this means is that you can take a lot of these same tools that quantum physicists have learned about quantum states that cannot be measured directly when they are not being measured, and you can apply the same rules at the level of organisms. This was the point I was making in my presentation.

Now I am answering you in a general way, but if you have a specific example you are looking for, I would be glad to get more specific. But the approach I am talking about explains why these quantum effects disappear when we move into the macroscopic world. In fact, that has been the main purpose of my paper, to explain why these things happen. Quantum mechanics has a really good mathematical formalism that has never been proven wrong, but the big problem is what does it mean. Why does nature work this way?

If what I am saying here is true, that these are not just similarities between the behavior of quanta and the behavior of organisms, but they are the same principles at work, because it is about the way individuals with sentience, with some kind of sentient agency, respond to each other, then it opens the door to a new way of understanding what is happening at the quantum level that can lead to new predictions.

At the level of physics, does this new approach solve any problems? Yes, it does. For example, it opens the door to the quantum gravity problem: How do you explain gravity in terms of quantum mechanics? That is one of the big unsolved problems. And my paper offers an explanation for why gravity emerges from the quantum level. It also offers other solutions. My paper goes a lot further in explaining all of this.

 

Q:  My understanding is that if you look at quantum physics, which has very defined rules, and then you try to find some physical aspect in real life that we see, I think you could find any example for any phenomenon. You should not generalize everything like that.

A:  No, you shouldn’t. That’s right. Similarities are nice. Maybe they mean something, maybe they don’t. How do you determine this? This is where more testing is needed. But the fact is that one test should be that if this is true, if this is not just a similarity, if this is the same phenomena, then every quantum effect should be visible in the relationships between living organisms. In other words, there is an easy way to disprove it. In fact, I list a number of ways to disprove it, but that is an easy one.

 

Q:  Is it your conclusion that subatomic particles are sentient?

A:  Yes, that is what I’m proposing.

Q:  What does that even mean?

A:  Exactly! What does it mean? And how do you interpret what it means? Here is the issue: When physicists are trying to solve the quantum gravity problem, one of the things that they are now suggesting is the possibility that space is not fundamental. And time is not fundamental…

Q:  It sounds like you are saying that rocks are grey and I’m grey, rocks are heavy and I’m heavy, I’m alive, hence rocks are alive. It just doesn’t follow for me.

A:  No, it goes much further than that. Take this problem with quantum gravity that I was just starting to talk about. They are now questioning if space is fundamental. That means that space is emerging from something more fundamental at the quantum level. How does it emerge? What they are saying is that relationships between the particles might be forming the state that we call the field of space. And the way the math works, the way they are modelling this is the same way we would say a society is formed by organisms and how they interact. It is very, very similar.

Further answer:  After the Q&A session was over and we got together to chat informally, this same scientist made his point again that it sounds like I am saying that if a rock is grey and his beard is grey, that means they are the same. I could see that he didn’t feel I had properly responded to his point. So, I said that what he is talking about is one similarity, and obviously if it is just one similarity it makes no sense to say they are the same. But the question I am asking is what if every trait is similar? At what point do you start to say they are the same? Not just one trait, but every trait. Not just one quantum property but every quantum property. If every trait is the same, at what point do we just admit that they are the same? He seemed more satisfied with that response.

However, I think that what his question was really getting at, as well as the questions of others, is that this is not good enough to be satisfying as a proof that the behavior between quanta and the behavior between organisms are the same based only on a list of similarities. I agree with this and I say the same thing in my paper. It is not satisfying by itself to say this alone. In fact, in my paper, I say that this is nothing more than an informal test to see if I can disprove the theory. The fact that the theory holds up after examining a dozen of the most significant quantum effects is surprising and unexpected. But this is not satisfying as a proof.

To put this another way, how do we verify whether an interpretation of any kind is correct when it comes to quantum mechanics? This is not just an issue for the theory that I am suggesting. This is the core issue at the heart of all interpretations of quantum mechanics. And physicists agree that there is only one truly valid test to determine whether an interpretation is valid. That core issue is how that interpretation fares in relation to the formalism of quantum mechanics.

The reason for this is that the formalism is what physicists have the most faith in because no one has ever found a case where it doesn’t work or that it gives the wrong answer. Therefore, the question that an interpretation needs to offer, at a minimum, is an explanation for what the formalism is trying to tell us about the world.

This is why the bulk of my paper focuses on showing how underlying principles based on sentience are indeed consistent with quantum formalism. But I go further than this usual test and show how the underlying principles can actually offer an explanation for why quantum formalism takes the form that it does. As far as I know, explaining the formalism from a set of simple principles has never been done before. Plus, it shows this through an intuitive explanation that we can relate to as human beings because the same principles apply to our lives. In addition, my paper offers a model for how this works.

However, the most important test, after showing an interpretation is consistent with the formalism of quantum mechanics, is to see if it can predict new solutions to existing problems. And this is also what I offer in my paper. The testing of those predictions, many of which are surprising, is the best way toward arriving at a level of satisfaction before we adopt an interpretation. This is the bottom line that all interpretations need to address to become accepted.

It is also worth mentioning that all interpretations of quantum mechanics are a bit crazy. Most are more than a little crazy. In fact, Niels Bohr admitted that any valid interpretation would have to sound crazy because quantum mechanics itself is crazy. Bohr often ruled interpretations out simply because they weren’t crazy enough. For a quote on this, see my paper.

 

Q:  Another example that exists at the quantum level is quantum tunneling. Do you have an example for that?

A:  Quantum tunneling, yes, that is the result of the superposition principle. This is used in transistors. An electron is not actually in one location until it exchanges energy of some kind. So that means that it could be on one side of a silicon gate or it could be on the other. Probability says that a certain percent of the time it is going to be on one said, and another percent of the time it will be on the other side. If the space is small enough, this is what will happen. This is called tunneling. Does the electron actually go through the gate and tunnel through? No, it appears on this side and then it leaps to that side.

Q:  I thought that tunneling and superposition were a bit different. But anyways, can you find any examples of this, being on one side and then another, happening in living things?

A:  I just gave an example in my presentation: First we are on the left side of the brain and then we switch to the right side of the brain. One moment you’re seeing through the right eye and the next moment you’re seeing through the left eye. As soon as vision becomes conscious, you are choosing between one or the other.

Q:  I’m not convinced.

A:  I’m not asking anyone to be convinced. The purpose of this is to look at these as possibilities. Is this convincing? No, because it is so strange.

Q:  But the object you are looking at is always in one position.

A:  Yes, if it is a macroscopic object.

Q:  Can you give an example of a macroscopic object that is in one position and then another?

A:  No. The reason that macroscopic objects are only in one position and are not jumping around is because you are looking at billions of particles. You will never see objects like that jumping around and physics tells us that we will not see this. But one particle, one individual, is not always in just one position at a time.

In other words, this is all about the massive number of particles in that object. For example, a mound of dirt is not going to be jumping around because it is a huge mass of separate particles. Our body is a mass of cells, so you don’t see our body jumping around. We only see quantum effects when we are looking at individual agents.

Q:  So, you cannot explain this at the macroscopic level?

A:  Physicists know that things at the quantum level act differently than they do at the macroscopic level, but they don’t have a consistent theory that explains why. Why does this transition happen? In fact, this is called the limit problem. Why do quantum effects disappear at the macroscopic limit? And the fact is that it happens very similarly to what we see in human behavior.

Individuals in small groups are much more spontaneous and unpredictable. In large groups, they act more controlled. They act more in line with the group. In large institutions there is much more red tape, much more control. Small companies, on the other hand, have far more spontaneous activity and a greater sense of freedom. What it feels like to be in a family is far different than how it feels to be in a large company. Institutions can seem impersonal, while small groups are more personal.

So, what is happening is that as the group gets larger and larger, there is more restriction. There is more of a sense of control. Going against the norm takes more effort. What we never see on the human level is groups with trillions and trillions of people like we see with atoms and fundamental particles because we just don’t that many humans on this planet. But you do see the same transition and the same limit that emerges as a group grows larger. So, the math and the model I am proposing hold up.

Is it convincing? No, this is still speculation. But it is surprising to see these similarities. There is nothing in quantum theory to suggest that we should see any of these quantum behaviors between organisms.

 

Q:  Back to the superposition principle. At the quantum level, if you look at the math about the interference between two states, the two states happen at the same time. It is not like the electron is shifting between spin-up and spin-down states. Whereas, when we think of two things at the same time, or the two sides of the brain, it is either or, when we shift quickly. So, this is not quite the same.

A:  No, actually if you look at the processing the brain is doing before it becomes conscious, the unconscious processing, not the conscious perception, the brain is actually processing data from the left eye and the right at the same time.

Q:  So, when it decides to do something that’s the measurement?

A:  Exactly. When it hits your conscious perception, that’s when it switches.

Q:  All right. Then what bothers me is we know in quantum physics that once you have a large number of these things that the laws of large numbers will make everything certain. Where is the microscopic brain that we have? You are saying that our brain is acting as if it is microscopic when it is unconscious.

A:  No, actually, most of the processing in our brain is beyond that crossover point, which is why most neuroscientists ignore the quantum effects. There are some theories out there that perhaps consciousness emerges from the brain because of quantum effects but there are a lot more people that disagree with that theory. But that is not what I’m talking about. What I am talking about is where does the crossover happen between quantum and traditional physics?

Niels Bohr did not know where this crossover happens. He thought the line could move. Others said no, the line can’t move, it depends on how you are measuring it. There is a lot of confusion about this. The theory I am proposing makes it very clear. At the level where you see individual agents interacting, that is where you see quantum effects. And when it becomes impersonal group behavior, the quantum effects disappear. The quantum effects get nullified. They get averaged out more and more as the group gets larger and larger.

If you think about all the atoms in your body, if they all shifted to the right at the same time, your body would shift. They don’t do that because they are all individuals. They all cancel out each other’s quantum shifting. This is why at the classical level, at the large level, you do not see that. And the thing that is interesting is that this theory I am proposing gives us a reason.

Now, is that reason useful? Can you use it? Yes, it helps explain the quantum gravity problem that physicists have been running up against because it shows you that the field of space is like a society for all of the particles in the universe. That is why they follow laws like the laws of physics that are so repeatable on the statistical level. In the paper I go into this in a lot more detail.

Further answer:  I should have been clearer about how this switching from the left side of the brain to the right side of the brain takes place if this is a case of superposition, as I am proposing.

The question this scientist was asking was how the brain is behaving as if it is microscopic, like quantum particles, to display properties of superposition. As I explained, the reason this also happens at the level of organisms is because they are acting like sentient agents. Wherever we see sentient agents interacting with each other we are going to see quantum effects, because this is exactly where quantum behavior comes from. It comes from responsive relationships between sentient agents.

Now, what does this mean at the level of brain cells? Well, since each cell acts as a sentient agent, we should see quantum states in their relationships with each other. But we, the being who inhabits our body, is also a sentient agent. This means that there will also be quantum effects emerging from the relationships between us and the cells of our body. These effects will include entanglement and superposition states. When we engage with our body to initiate some action, we are then acting from a specific place in our body. This is why, when we are consciously looking at something, our conscious vision switches from one eye to another. Before our vision becomes conscious, we have a superposition of both the right eye and the left eye. We actually have a relational state with the cells in both eyes. But then something in the vision from one of the eyes catches our attention and we then switch to that eye. We also switch back and forth between the left side of our brain and right side when this happens. This is not just for vision. We switch back and forth from the left side to the right side of our brain all the time.

 

Q:  It feels like you are reviving vitalism. Your atoms are now sentient. We don’t know where that sentience comes from, but it is there, and it affects people and plants and particles apparently. Whereas, in the science where I grew up, we try to go the other way. We try to start with the particle level and understand bigger and bigger systems until we understand what life is and how brains work. You have turned this upside-down. You start with sentience.

A:  Yes, consciousness is at the beginning, not at the end.

Q:  Doesn’t that need an explanation?

A:  Philosophers call this panpsychism. It is the theory that every particle has sentience of some kind.

It turns out that there’s a big problem when it comes to explaining consciousness. Philosophers call this “the hard problem.” And obviously there are two different theories. One theory says that consciousness emerges from the brain somehow, from interactions in the brain. And there has been a lot of attempts to understand that, but there has been no progress in offering even a possible theory about how that might happen.

Panpsychism, on the other hand, suggests a different approach because all particles are conscious to begin with. The famous philosopher who talked about this hard problem is David Chalmers, and he has generated a lot of interest because objective science has not been able to solve this problem. And lately he has been coming to the conclusion that one viable solution is panpsychism.

But, according to Chalmers, if we go down the path of panpsychism, then we face new problems. He raised three major issues, called “the three combination problems,” that have to be solved. I talk about these in my paper. It turns out that what I have proposed leads to a solution to these three problems as well.

Q:  Is it fair to say that mind cannot understand consciousness because consciousness has to become conscious of itself to understand it?

A:  Yes, but my paper doesn’t go to that level. My paper says this: The whole mind-body problem that philosophers have talked about—how does the mind cause the body to move?—this theory can offer some explanations for this. For example, if you want to raise your hand, your hand goes up. But do you know how to make your hand go up? Do you know which muscles to move to make your hand go up? No. We don’t know how to do that.

If you were running down the street, do you know which muscles and in which order to get yourself moving? No, we’re not doing that consciously. It’s happening unconsciously. And if we started trying to do it consciously, you’d look like a broken robot, it wouldn’t be graceful at all because our conscious mind process is too slow to make all the things needed to happen at the right time. What that means is that there is unconscious behavior that is making all those things that we need to do to allow us to run. And as I said in my presentation, all unconscious behaviors are quantum behaviors.

How does the mind, or “us,” the agents in our bodies, cause our bodies to move? We are asking about the relationship between us as the agent and all the cells in our body. That is a quantum entangled state. And it is very similar to the state that three quarks form when they create a proton. They exist in a state that only exists when all three quarks complement each other and work with each other at the same time. There is no moment before the strong force activates that pulls the quarks together. The state only exists after all three quarks come together at the same time. And the same thing happens with the creation of an atom. So, an individual, like a proton, emerges from a state only when three particles become entangled together. This is only a brief explanation but hopefully you can get a sense of how this new approach offers a different perspective.

Further answer:  I am in the process of writing a paper that explores the question of biology in a lot more detail. The question comes down to answering what it is that makes organisms alive. It turns out that a number of the founders of quantum physics felt that they were close to solving this puzzle, but they fell short because they couldn’t explain why there were such surprising similarities between quantum states and the states of living creatures. The theory of sentient particles I am proposing here opens some interesting new doors to explore the question of life.

This is, of course, all highly speculative at this point, but science often learns new ways of studying problems by using new perspectives and new lenses of perception.

The amazing similarity between the Reproducibility Crisis in psychology and the Measurement Problem in quantum physics is worth considering, especially when it is just one of dozens of surprising resemblances.

Upcoming Talk: What Psychologists & Quantum Physicists Can Teach Each Other

By Doug Marman

I will be giving a talk at a university in Toronto on Friday, October 5 at 2:00 PM – 3:00 PM, EDT, at York University, 4700 Keele Street, Toronto, ON, Toronto, Ontario M3J 1P3. The public is welcome to attend.

You can find more information at these links:
Facebook, Meetup, The Hidden Teachings of Rumi webpage

Here is an overview of what I will be talking about:

For the last 100 years, psychologists have been moving toward a more scientific approach, to find principles that can be established on the firm ground of objectivity. At the same time, quantum physicists have been turning the foundations of physics in exactly the opposite direction, toward the realization that objectivity is impossible when observing quantum behavior; that “forces” do not force particles, they only influence them; and that it is quantum entanglement between particles and the environment that create the appearance of a solid objective reality.

Psychology can learn important lessons from these quantum discoveries. For example, it offers new insights into the recent “replication crisis” in psychology experiments by showing that there is a direct relationship between the replication problem and the “measurement problem” in quantum physics. I recently published an interpretation of quantum mechanics that also suggests the possibility that subatomic particles may behave so strangely because they possess an element of sentience, and all of the strangest aspects of quantum mechanics can be explained by this sentience. This new interpretation predicts that quantum behavior should also be present whenever relationships form between sentient agents, including organisms and human beings. If this is true, then psychology will never become a hard science like classical physics because there are too many quantum effects involved in human perception and experience.

At the same time, psychology has lessons it can teach physics. Over the last century, physicists have failed to find a way to understand the quantum mystery. Perceptual “sets” and “schemas” offer insights that open the door to a deeper understanding. The scientific lens of perception comes from schemas learned from centuries of studying mechanisms and reactions to forces. This is why the principle of objectivity became the foundation of science at the same time as the Industrial Revolution took off. But this lens of perception has not been able to solve the paradoxes of quantum mechanics, the mystery of what makes organisms alive, or the enigma of consciousness. An understanding of perceptual sets can play a role in expanding the reach of quantum physics, especially when it gives us insights into why quantum relationships between sentient quanta should indeed create forces of attraction and repulsion, as physicists have learned.

If have questions, comments, feedback, or would just like to engage in dialogue on this subject, feel free to start the discussion below.


Science Paper Published: The Lenses of Perception Interpretation of Quantum Mechanics

By Doug Marman

A paper I wrote for the peer reviewed Integral Review Journal was just published. You can read the paper here: http://integral-review.org/current_issue/vol-14-no-1-aug-2018/

This paper is a formal scientific paper that I have been working on for two years. I have tried to write it to be understandable to anyone who enjoys science and knows something about quantum physics. If you have read my book, Lenses of Perception, you will see that this paper presents the same ideas in a more formal and more thorough scientific manner.

The Editor-in-Chief of Integral Review Journal, Jonathan Reams, introduces my paper with these comments:

40 years ago I began my university education studying physics, but dropped out and later turned to studying consciousness (and leadership). Along the way I have encountered numerous perspectives on the relationship between the two subjects, with a polarity in perspectives, from materialist interpretations to idealist ones. This conversation continues today, being taken more and more seriously as it becomes apparent that we cannot ignore an integral view of the intimately intertwined nature of consciousness and matter. The science magazine Nature recently highlighted this as an ongoing conundrum (see article here). An example of an integrative perspective comes in the notion of panpsychism, that consciousness is a fundamental feature of physical matter, which is being taken seriously by a wider range of mainstream physicists and others (see article here). All of this leads into the territory IR has always been intended to serve as a platform for new thinking from an integral view.

Thus we fittingly begin this issue with Doug Marman’s The Lenses of Perception Interpretation of Quantum Mechanics. At IR, we are always on the lookout for new thought and Marman delivers on this. His article is a substantive piece of investigation into some of the most fundamental questions science has ever tried to answer. In true transdisciplinary fashion, Marman covers a wide range of disciplinary knowledge. He begins by showing similarities between quanta and living organisms, leading to an inescapable predication that quantum behaviour is driven by sentience. This leads naturally into a detailed examination of consciousness itself and how participation is a creative process of perception…. Marman then lays out a set of nine postulates that lay a more formal foundation to show how his Lenses of Perception interpretation can address a wide ranging and essential set of issues generally held as necessary for any theory to be able to bring coherence to our understanding of all physical processes. Having done this, an examination of quantum formalism and how the LoP interpretation (using first, second and third person lenses) not only meets the tests of quantum formalism, but even shows why the second person lens of relationship is necessary for understanding it. Finally, Marman lays out how his LoP interpretation meets a variety of challenges, including the five unsolved problems of physics, and points to ways to test out this interpretation. The overall scope, depth, breadth and rigor of Marman’s work makes this article a seminal contribution to discourse around these fundamental questions, and IR is pleased to publish it here.

If you have any technical questions, comments, feedback, or if you are interested in dialogue over any of the issues raised in my paper, please feel free to start the discussion below.

The Fallacy of Complexity

By Doug Marman

Even the simplest organisms are amazingly complicated. This is why scientists who focus on the origin of life often study complexity. They try to find ways that intricate patterns can emerge from simple algorithms. They hope that this will give us clues on how cellular life evolved. This is a fallacy.

The mistake comes from confusing complexity, in general, with the specific kind of intricacies we find in living things. There is so much vague thinking about this subject that many scientists think that generating any kind of complexity can help solve the mystery of life. Countless hours have been wasted on this pursuit.

Professor Sharon Glotzer talks with some engineering students. Photo from University of Michigan.

A recent article raises this issue again. “A ‘Digital Alchemist’ Unravels the Mysteries of Complexity” describes the fascinating work of Sharon Glotzer and her 33-person team, at the University of Michigan.

Glotzer uses computer simulations to study emergence — the phenomenon whereby simple objects give rise to surprising collective behaviors. “When flocks of starlings make these incredible patterns in the sky that look like they’re not even real, the way they’re changing constantly — people have been seeing those patterns since people were on the planet,” she said. “But only recently have scientists started to ask the question, how do they do that? How are the birds communicating so that it seems like they’re all following a blueprint?”[1]

Glotzer specializes in the way inert shapes can naturally align to create surprisingly complex patterns.

For example, if you have a room full of spheres, all the same size, they will naturally assemble into a simple lattice pattern. You only need to shake them gently and they will fall into this simple repeating pattern. What Glotzer discovered is that if you start with other shapes, such as pyramids, made from triangles on all sides, they produce quasi-crystalline patterns that never repeat. Simple shapes can produce surprisingly complex patterns.

Glotzer sees this as a potential new insight into the origin of life. She said:

Most scientists think that to have order you need chemical bonds — you need interactions. And we’ve shown that you don’t. You can just have objects that, if you just confine them enough, can self-organize… So it’s a completely different way to think about life and increasing complexity… I know because I’ve done this, that I can take a bunch of objects and put them in a little droplet and shrink the droplet a little, and these objects will spontaneously organize. So maybe that phenomenon is important in the origin of life, and I don’t think that’s been considered.

This insight about the patterns created by different shapes is valuable for the work that Glotzer does: creating new materials through molecular engineering. Unfortunately, it isn’t going to helps us solve the mystery of the origin of life because it displays the wrong kind of complexity.

This simple mistake happens far too often. It is time to kill this fallacy.

The reason that even smart scientists fall for this error is that they really don’t understand organic life. They can’t explain how even the simplest cells survive. Physics and chemistry don’t give us the tools needed to illuminate the secret of life.

What happens when we face something unknown, something we don’t understand? We naturally compare it to things that we know. That is why scientists keep trying to see if mechanical reactions can explain life.

Unfortunately, this doesn’t help, for a simple reason: Life is complicated in a special way that machines can’t achieve. Once you see this, you will realize why all of the games with computer algorithms, looking for ways to create complexity, are a waste of time.

To understand this, let’s start with one of the best introductions to this problem and how it relates to the origin of life. In Richard Dawkin’s book, “The Blind Watchmaker,” he asks:

So, what is a complex thing? How should we recognize it? In what sense is it true to say that a watch or an airliner or an earwig or a person is complex, but the moon is simple?[2]

Dawkins takes us down this path to show that we have to throw away many of the simplest ideas about complexity if we want to get at what really matters. For example, the moon is simple because it is one homogeneous thing, like a bowl of milk or the endless sands in the Sahara desert. Dawkins suggests that we need a system with many different elements. That is the kind of complication we are looking for.

However, this isn’t enough. A mountain, like Mont Blanc, is made up of many different types of rocks. And every area of Mont Blanc is truly unique and distinct from every other, making it far from simple. But this doesn’t resemble the patterns we find in organisms.

Mont Blanc, the highest mountain in the Alps. Photo from Wikipedia.

He then asks if we can get closer to the mystery of life by looking at probabilities. What if we say something is complex only if it has an arrangement of many different elements in a way that is highly improbable?

[I]f you take the parts of an airliner and jumble them up at random, the likelihood that you would happen to assemble a working Boeing is vanishingly small. There are billions of possible ways of putting together the bits of an airliner, and only one, or very few, of them would actually be an airliner. There are even more ways of putting together the scrambled parts of a human.

This approach to a definition of complexity is promising, but something more is still needed. There are billions of ways of throwing together the bits of Mont Blanc, it might be said, and only one of them is Mont Blanc. So what is it that makes the airliner and the human complicated, if Mont Blanc is simple?[3]

In other words, the complexity we are looking for can’t be found by just throwing things together. We need to see something more than just an accumulation of parts.

This shows why Glotzer’s discovery is not going to help. She researches the results of tossing things together. Yes, they can make amazing patterns that never repeat, which are fascinating, but it is still just a pile of parts. By itself, this pile doesn’t do anything special.

Therefore, it isn’t the improbability of a non-repeating pattern that we are looking for. We need something more. As Dawkins says:

If we see a plane in the air we can be sure that it was not assembled by randomly throwing scrap metal together…[4]

Intentional flight requires a different type of complexity. A plane allows people to travel around the world. That is what jumps out at us. Jets can’t be created by just throwing things together and hoping that something special is going to emerge.

But this is where I part ways with Richard Dawkins, because even this isn’t the kind of complexity we are looking for in living creatures. Why? Because planes are designed and constructed by human beings from a plan, from a blueprint. On the other hand, multicellular creatures, such as animals, fish, even trees and plants, develop from single cells, into complex bodies, made up of many organs that work intricately with each other. We don’t see the same thing in even the most sophisticated machines.

Can we explain the difference between the complexity of machines and organisms? Let’s look.

Planes don’t grow from seeds. That’s one difference. Here is another, plants and animals are not assembled by outsiders.

Airliners don’t seek for food or fuel on their own, while creatures are able to overcome incredible obstacles to find nutrition. Jets don’t develop unique ways of defending themselves from predators. And planes don’t reproduce by mating with other aircraft, or by dividing into two.

Organisms clearly show us a different kind of complexity than machines. Scientists keep trying to treat creatures as if they are sophisticated machines, but the metaphor fails in important ways. For example, biologists have been forced to abandon the old idea that DNA contains a blueprint for constructing the body of animals. It simply doesn’t work.

When DNA was first discovered, biologists expected to find one gene for every protein and enzyme needed in the human body. Once they mapped the whole genome, however, they found that there aren’t even close to enough genes to pull this off.

Every gene is involved in multiple roles. They also need to work with countless other genes. Many times, parts of one gene are used with parts from another, to get what is needed. And genes are turned on and off from outside the DNA.

Look at trees. They don’t follow a blueprint or a plan. That’s why the branches, leaves, and seeds emerge spontaneously at different places, making each tree unique. The blueprint idea simply doesn’t work as an explanation. This is one of the many failed attempts to compare living things to machines.

So we need to find a different kind of complexity than we see in machines. How do we describe this difference? Here is one way: You can’t take a creature apart to study how all of its organs and cells work together. If you try to do this, you will kill it.

That leads us to an even bigger difference: If a bird dies, it can no longer fly or search for food. Its body is just as complex as it was the moment before it died, but now it no longer hops on its feet, flaps its wings, or sings.

Robert Rosen’s description of complexity brings us closer to the mystery of life that we are searching for: A living organism is a system that cannot be fully explained by reducing it to its parts because it can only live when its parts work in a relationship with each other as a whole.

Rosen puts it this way:

It has turned out that, in order to be in a position to say what life is, we must spend a great deal of time in understanding what life is not. Thus, I will be spending a great deal of time with mechanisms and machines, ultimately to reject them, and replace them with something else. This is in fact the most radical step I shall take, because for the past three centuries, ideas of mechanism and machine have constituted the very essence of the adjective ‘scientific’; a rejection of them thus seems like a rejection of science itself.

But this turns out to be only a prejudice, and like all prejudices, it has disastrous consequences. In the present case, it makes the question ‘What is life?’ unanswerable; the initial presupposition that we are dealing with mechanism already excludes most of what we need to arrive at an answer. No amount of refinement or subtlety within the world of mechanism can avail; once we are in that world, what we need is already gone.[5]

This helps us see the enigma of life more clearly. This is the puzzle we need to solve. Now that we understand the mystery we are up against, it is easy to see why most discussions about complexity and the origin of life completely miss the point. Complex mechanisms and chemical reactions are not enough. Even random events won’t help because the puzzle we need to solve is to explain what makes living things alive.

No one has found a mixture of chemicals that alters its course, avoids threats, or replenishes itself. Chemical reactions simply stop when the energy driving them runs out. Then where does the remarkable desire for life come from?

A crystal, a candle flame, a hurricane, or a Bénard cell does not seek resources when the material conditions for continued catalysis runs out; they cease. Living things do so until all options are exhausted. Some of the simplest organisms engage in surprisingly elaborate behaviors to forestall cessation.[6]

How did a self-organizing, autocatalytic chemical system come to persist in such a way that it could be described as self-preserving…? We do not know. Moreover, we do not appear to be overly concerned that we do not know. The answer cannot be, it just did.[7]

One way to make this point even clearer is by distinguishing between “self-ordering” systems and the kind of organization that we see in living organisms, where cells and organs form responsive relationships, as they work with each other toward a common goal.

Self-ordering should not be confused with self-organization.[8]

A flame on a candle, the vortex that forms in tornados and hurricanes, and crystalline shapes are all examples of self-ordering. They are all the result of physical dynamics that can be explained with physics and chemistry.

No truly sophisticated function has ever arisen from self-ordered states.[9]

Living organizations are different. They require relationships between responsive life forms. For example, human beings work together for a common purpose. Cells and organs work together as a whole. And flocks of starlings fly together as a group. These types of living organizations can’t be explained by simple cause and effect mechanisms or principles of chemistry.

Swarm of starlings. Photo from Wikipedia.

What Glotzer is talking about is clearly self-ordering, not self-organizing. Glotzer’s work is fascinating, but there is no great mystery in the way objects self-order and arrange themselves. This isn’t going to help us solve the enigma of life. Even a well-planned blueprint isn’t enough.

Living organizations and living organisms have a special form of complexity that can never be fully understood by taking them apart.


[1] Natalie Wolchover quotes Sharon Glotzer, “A ‘Digital Alchemist’ Unravels the Mysteries of Complexity,” Quanta Magazine, March 8, 2017.

[2] Richard Dawkins, The Blind Watchmaker (New York: W. W. Norton & Company, 1986), p. 6.

[3] Richard Dawkins, The Blind Watchmaker (New York: W. W. Norton & Company, 1986), p. 7.

[4] Richard Dawkins, The Blind Watchmaker (New York: W. W. Norton & Company, 1986), p. 8.

[5] Robert Rosen, Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life (New York: Columbia University Press, 1991), p. xv-xvi.

[6] Lyon, “To Be or Not To Be: Where Is Self-Preservation in Evolutionary Theory?” Major Transitions, p. 106.

[7] Ibid., p. 122.

[8] Abel DL, Trevors JT. Self-Organization vs. Self-Ordering events in life-origin models. Physics of Life Reviews. 2006;3, page 211. Also available from http://lifeorigin.academia.edu/DrDavidLAbel.

[9] Abel, DL. Life Origin, A Scientific Approach, edited for the non-scientist. Available from http://lifeorigin.info/whats-the-difference-between-self-ordering-and-self-organizing.html – _ENREF_21

The Reproducibility Crisis of Psychology and What It Is Trying to Tell Us

By Doug Marman

Over the last few years, a raging crisis has hit the field of psychology: Most published studies can’t be replicated by others. For example, 100 experiments published by highly respected psychology journals were recently tested and only 36% produced results in agreement with the original reports.[1] This is called the “reproducibility crisis.”

It’s a complicated problem. It isn’t caused by fraud, except in rare cases. Many factors are involved, as explained by this article. For example, designing psychology experiments is more difficult than it sounds, and drawing conclusions often involves complex statistical analysis. Even the experiments aimed at reproducing experiments have been found wanting.[2]

This has created a rift among psychologists, with half saying that the problem is more about the way reproducibility tests are run, with the other half feeling “the academic ground give up beneath their feet.” This led one reporter to ask:

“Crisis or not, if we end up with a more rigorous approach to science, and more confidence in what it tells us, surely that is a good thing?”[3]

No, I don’t think that is the answer. In fact, I believe it will make the reproducibility problem worse. The rigorous approach of traditional science is part of the problem. It is time to put a spotlight on how objectivity can interfere with psychology experiments. Otherwise, we are going to continue casting doubt on valid scientific experiments.

Take, for example, an experiment that is literally a textbook case:[4] In the 1980s, Fritz Strack and his co-workers showed that when a person smiles, it improves their mood. Many well-known psychologists, such as William James, and scientists, such as Charles Darwin, have said that expressions create emotions. It makes sense. The challenge was how to design an experiment that scientifically verifies this.

You can’t just ask people to smile, because that automatically makes them conscious of what they’re doing. That will invalidate the results. Strack and his co-workers needed to find a way to get people to move their mouths into a smile, or a pout, without them knowing what they were doing. They found an ingenious solution.

When they asked people to hold a pen in their mouths, with their mouths closed, they automatically moved their faces into a sort of pout. When they asked another group to hold a pen between their teeth without closing their lips, they naturally formed a smile. The subjects had no idea what the test was really about. They were told that the experiment was studying people trying to do two things at the same time. They needed to hold the pen in their mouths while evaluating a series of Far Side cartoons.

Images from an experiment that tested the influence of smiling versus pouting.

The results showed that the group with smiles found the cartoons funnier than the group who was pouting. In other words, just putting your face into a smile naturally brightens your day.

The experiment has been verified countless times over the last twenty-five years, by many researchers. Some have expanded and tested the idea in new ways, besides smiles and pouts, and found similar results. For example, if you take a confident stance, in front of a group, you feel more confident.

So, Strack volunteered to have his classic study be tested by a team of researchers who wanted to reproduce psychology experiments. He wasn’t concerned. It had already been validated before.

Unfortunately, results from the replication experiment contradict Strack’s conclusion. The new test was run by seventeen scientists, across eight countries, using 2,000 subjects. They found no evidence that an unintentional smile or pout made any difference in the funniness of cartoons.[5]

How can this be?

Strack questions the conclusions and the set-up of the experiments. He voiced his concerns even before the testing began, after looking over their approach. At first, as I read Strack’s complaints, it felt like he was trying to defend his original work. But a number of things made me question my first impression.

First, Strack himself offered his experiment to be tested for replication and willingly supplied his original notes and evidence. Second, it had been confirmed successfully many times by other researchers. Third, he questioned the impact of the replication experimenters excluding the results of 600 subjects because they felt those subjects were holding the pens incorrectly or their answers were too wildly divergent. Did their selection to exclude certain results introduce a bias? Fourth, Strack pointed out that many of the subjects were psychology students. Since this was a textbook case, they could have recognized the experiment and its true purpose. That would have prevented them from acting naturally. They should never have been involved.

But it was the fifth point he made that jolted my attention. Strack said that he didn’t like the addition of cameras in the room watching the subjects because it could make the participants self-conscious. That jogged my memory. I had seen this scenario before.

It was one of the most famous early studies in psychology. In 1897, George Stratton strapped on a pair of lenses over his eyes that inverted and reversed his field of view.[6] He knew that our eyes have built-in lenses that produce the same effect: All of the images hitting our retinas are flipped upside-down and reversed. Stratton wanted to see if his mind would naturally find a way to invert and correct his vision.

Sure enough, after five days of looking through inverting lenses, he saw everything as right-side-up. After a week, his new vision felt completely normal.

The results were so startling that hundreds of follow-on experiments were run to reproduce the results. Many did, but some could not. For example, David Linden, a hundred years later, called Stratton’s theory of achieving upright vision a myth.[7] This has created an ongoing controversy.

I studied dozens of experiments with inverting lenses to find an explanation for what was going on. Why were the results so different? I finally found an answer in the longest study ever performed (40 days).[8] Ivan Kohler discovered, unexpectedly, that when he tried to examine the subjects every day with a battery of clinical tests, it interfered with their ability to adapt. They actually regressed.[9]

At first, Kohler thought lab tests would help show the progress his subjects were displaying. Just as Linden did, Kohler brought them in for examination on a daily basis. However, the tests made things worse. The subjects reverted back, losing the gains they had made. What’s going on, he wondered? Kohler had to alter his tests before figuring out the problem. As soon as the experiments were designed to resemble the everyday world, the problem disappeared:

“When the subject was asked to ‘aim’ at something, or to put up his hands in protection when danger threatened…he made correct responses. But when he was asked, ‘Please point this marker in the direction the light is coming from,’ errors occurred.”[10]

That’s when Kohler realized that the subjects were adapting instinctively to the real world. The moment they tried to think critically and objectively about what they were seeing, it broke their “perceptual set.” They reverted back to pre-experimental ways of seeing the world. Asking them to analyze what they were doing prevented them from adapting.

This was hard to understand, Kohler wrote. It took weeks to solve the mystery. For example, after fourteen days of fencing practice, subjects with inverting lenses were able to respond to their opponent’s blade without errors. When it came to fencing, the correct reaction was all that mattered. But if he asked them the question, “Where do you see the rapier point?” it forced them to think critically about what they were experiencing, breaking their lens of perception. They immediately reverted back to old ways of seeing. His question interfered with their instinctive responses.

Getting the subjects to think objectively about what they were doing prevented them from adapting to upright vision. This was the mistake Linden had made. Even though Linden ran his experiment thirty years after Kohler, he didn’t realize the negative impact of objectivity. No wonder all his subjects failed to achieve upright vision.

This is the same affect that cameras can have on subjects. Strack was right: It would make them conscious of being recorded and seeing what they were doing objectively. It makes the experience less natural. On top of this chilling effect of cameras, all of the instructions telling the subjects what to do were presented by a recorded video, in a closed room with no other people, making the experience even more sterile and impersonal.

Can this explain why the subjects showed no positive effects from their unintentional smiles? I think it does. Remember, Strack was trying to study an unconscious effect. He designed his experiments specifically to avoid any interference of conscious thought on the part of the subjects. If moving their mouths into the shape of a smile influences their mood, it is going to happen unconsciously. This means they need to feel at ease and natural, or it isn’t going to work. Thinking critically and objectively about what they were doing is going to interfere.

Think of the irony: Subjecting the subjects of psychology experiments to rigorous, clinical objectivity prevented the very thing they were trying to study—natural responses. They intentionally used cameras and pre-recorded instructions to eliminate outside biases, and without knowing it they introduced a new bias that was just as powerful—objectivity.

Imagine what would happen to a loving relationship if you started analyzing your life partner or lover objectively. Do you think your relationship is going to get better or worse? Is it going to warm up or cool down your natural and playful back-and-forth exchanges?

Psychology research projects have noted the detrimental impact of objectivity on natural relationships. For example, in the last few decades, psychologists have looked closer at the way people learn new skills. John Flach, Professor of Psychology at Wright State University, offers an interesting illustration for how skill-based learning works: Look at the process a child goes through when first learning how to walk, then how to skate on ice, next how to do a handstand, and finally how to walk on stilts.

Each skill needs a “different type of coordination pattern,” a different way of acting to achieve control.[11] In other words, they each require a different lens of perception, a different way of seeing, to master these skills. They learn this unconsciously through trial and error.

Skill-based learning starts with actions. Trying something gives the child feedback, such as falling on their faces or flipping onto their backs. Then they try a new approach. With each loop of trial and error they gradually figure out how to balance and how to move. Learning at this stage is non-verbal and not mediated by thought: The child can’t explain how to balance on stilts. They don’t know how they learned to walk on their hands or skate on ice. They just did it.

This natural learning process is the best way to acquire new skills. No one teaches babies how to talk. They learn it themselves by making sounds and hearing the sounds they make. They learn how to use their bodies the same way: They form working relationships with their muscles and cells. They figure it out without thinking about it.

This is different from academic study, where we consciously think to understand new ideas and what they mean. Our natural process for learning new skills, on the other hand, is largely unconscious and critical thinking can interfere with this natural process.

Psychology experiments are not easy to design. The more rigorous and objective you make them, the more artificial they become, preventing the natural responses you are looking for. You end up learning less about how people act in the real world and more how they behave in a clinical lab.

This is why, as I said above, I believe more objectivity will make the reproducibility crisis worse, not better. What is needed is a better understanding of our lenses of perception, and where to use them. For example, objectivity, as a way of seeing, shouldn’t be the goal of science, but as a tool for double-checking and verifying our experiments. If we want our relationships with others and with our bodies to be natural and spontaneous, we need a relational lens instead, not objectivity.

Over the last century, psychologists have tried to become more rigorous and objective—to become more like physicists. At the same time physicists have come to realize that objectivity can’t explain the behavior of subatomic particles. This is the lesson they learned from quantum mechanics: How you set up an experiment alters the results, and there is nothing you can do to avoid this. In other words, there is no such thing as a fully objective perspective because all measurements influence the outcome.

This same principle applies to the study of natural human responses. It can’t be avoided. Objectivity and critical analysis can and will interfere. If we understand this better, I believe psychology experiments will become easier to reproduce.

I think Katie Palmer got it right when she said that the reproducibility crisis comes down to this:

“The field [of psychology] may have to think differently about how it thinks about itself.”


[1] Open Science Collaboration (over 260 co-authors), “Estimating the Reproducibility of Psychological Science,” Science, August 28, 2015: Vol. 349, Issue 6251.

[2] Daniel T. Gilbert, Gary King, Stephen Pettigrew, Timothy D. Wilson, Comment on ‘Estimating the Reproducibility of Psychological Science,’” Science, March 4, 2016: Vol. 351, Issue 6277.

[3] Ed Young, “Psychology’s Replication Crisis Can’t Be Wished Away,” The Atlantic, March 4, 2016.

[4] Fritz Strack, Leonard L. Martin, Sabine Stepper, “Inhibiting and Facilitating Conditions of the Human Smile: A Nonobtrusive Test of the Facial Feedback Hypothesis,” Journal of Personality and Social Psychology, Vol 54(5), May 1988, 768-777.

[5] Daniel Engber, “Sad Face,” Slate magazine,  August 28, 2016.

[6] George M. Stratton, “Vision without Inversion of the Retinal Image,” Psychological Review 4, no. 4 (1897), p. 341-360.

[7] David E. J. Linden, Ulrich Kallenbach, Armin Heinecke, Wolf Singer, Rainer Goebel, “The Myth of Upright Vision,” Perception 28, no. 4 (1999), p. 469-481. Also posted at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.294.9093&rep=rep1&type=pdf.

[8] Ivo Kohler, The Formation and Transformation of the Perceptual World, tr. Harry Fiss (New York: International Universities Press, 1964).

[9] Doug Marman, “Lenses of Perception: A Surprising New Look at the Origin of Life, the Laws of Nature, and Our Universe,” (Ridgefield, Washington, Lenses of Perception Press, 2016.), p. 88-90.

[10] Ivo Kohler, The Formation and Transformation of the Perceptual World, p. 153-155.

[11] John M. Flach and Fred Voorhorst, “What Matters?: Putting Common Sense to Work,” (Dayton, Ohio, Wright State University Libraries, 2016), p. 104-105.